Patents by Inventor Scott Koenig
Scott Koenig has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12173051Abstract: The invention is directed to bispecific molecules comprising an HIV-1 envelope targeting arm and an arm targeting an effector cell, compositions comprising these bispecific molecule and methods of use. In certain aspects, the bispecific molecules of the present invention can bind to two different targets or epitopes on two different cells within the first epitope is expressed on a different cell type than the second epitope, such that the bispecific molecules can bring the two cells together. In certain aspects, the bispecific molecules of the present invention can bind to two different cells, wherein the bispecific molecules comprises an arm with the binding specificity of A32, 7B2, CH27, CH28 or CH44.Type: GrantFiled: June 2, 2020Date of Patent: December 24, 2024Assignees: Duke University, MacroGenics, Inc., The University of North Carolina at Chapel HillInventors: Barton F. Haynes, Guido Ferrari, Scott Koenig, Leslie S. Johnson, Chia-Ying Kao Lam, Julia A. Sung, David M. Margolis, Liqin Liu, Jeffrey Lee Nordstrom
-
Publication number: 20240131162Abstract: This invention relates to antibodies that specifically bind HER2/neu, and particularly chimeric 4D5 antibodies to HER2/neu, which have reduced glycosylation as compared to known 4D5 antibodies. The invention also relates to methods of using the 4D5 antibodies and compositions comprising them in the diagnosis, prognosis and therapy of diseases such as cancer, autoimmune diseases, inflammatory disorders, and infectious disease.Type: ApplicationFiled: December 22, 2023Publication date: April 25, 2024Inventors: Scott KOENIG, Stanford J. STEWART
-
Publication number: 20240124582Abstract: The present invention is directed to the anti-LAG-3 antibodies, LAG-3 mAb 1, LAG-3 mAb 2, LAG-3 mAb 4, LAG-3 mAb 5, and LAG-3 mAb 6, and to humanized and chimeric versions of such antibodies. The invention additionally pertains to LAG-3-binding molecules that comprise LAG-3 binding fragments of such anti-LAG-3 antibodies, immunocongugates, and to bispecific molecules, including diabodies, BiTEs, bispecific antibodies, etc., that comprise (i) such LAG-3-binding fragments, and (ii) a domain capable of binding an epitope of a molecule involved in regulating an immune check point present on the surface of an immune cells. The present invention also pertains to methods of detecting LAG-3, as well as methods of using molecules that bind LAG-3 for stimulating immune responses.Type: ApplicationFiled: November 21, 2023Publication date: April 18, 2024Inventors: Ross LA MOTTE-MOHS, Kalpana SHAH, Douglas H. SMITH, Leslie S. JOHNSON, Paul A. MOORE, Ezio BONVINI, Scott KOENIG
-
Publication number: 20240084015Abstract: The present invention is directed to bispecific molecules (e.g., diabodies, bispecific antibodies, trivalent binding molecules, etc.) that possess at least one epitope-binding site that is immunospecific for an epitope of PD-1 and at least one epitope-binding site that is immunospecific for an epitope of CTLA-4 (i.e., a “PD-1×CTLA-4 bispecific molecule”). The PD-1×CTLA-4 bispecific molecules of the present invention are capable of simultaneously binding to PD-1 and to CTLA-4, particularly as such molecules are arrayed on the surfaces of human cells. The invention is directed to pharmaceutical compositions that contain such PD-1×CTLA-4 bispecific molecules, and to methods involving the use of such bispecific molecules in the treatment of cancer and other diseases and conditions. The present invention also pertains to methods of using such PD-1×CTLA-4 bispecific molecules to stimulate an immune response.Type: ApplicationFiled: November 1, 2023Publication date: March 14, 2024Inventors: Leslie S. JOHNSON, Gurunadh Reddy CHICHILI, Kalpana SHAH, Ross LA MOTTE-MOHS, Paul A. MOORE, Ezio BONVINI, Scott KOENIG
-
Publication number: 20240018261Abstract: The present invention relates to methods of treating or preventing cancer and other diseases using molecules, particularly polypeptides, more particularly immunoglobulins (e.g., antibodies), comprising a variant Fc region, wherein said variant Fc region comprises at least one amino acid modification relative to a wild-type Fc region, which variant Fc region binds an Fc?R that activates a cellular effector (“Fc?RActivating,” such as Fc?RIIA or Fc?RIIIA) and an Fc?R that inhibits a cellular effector (“Fc?Inhibiting,” such as Fc?RIIA) with an altered Ratio of Affinities relative to the respective binding affinities of such Fc?R for the Fc region of the wild-type immunoglobulin. The methods of the invention are particularly useful in preventing, treating, or ameliorating one or more symptoms associated with a disease, disorder, or infection where either an enhanced efficacy of effector cell function mediated by Fc?R is desired (e.g.Type: ApplicationFiled: September 7, 2023Publication date: January 18, 2024Inventors: Jeffrey B. Stavenhagen, Scott Koenig
-
Patent number: 11858991Abstract: The present invention is directed to the anti-LAG-3 antibodies: LAG-3 mAb 1, LAG-3 mAb 2, LAG-3 mAb 4, LAG-3 mAb 5, and LAG-3 mAb 6, and to humanized and chimeric versions of such antibodies. The invention additionally pertains to LAG-3-binding molecules that comprise LAG-3 binding fragments of such anti-LAG-3 antibodies, immunoconjugates, and to bispecific molecules, including diabodies, BiTEs, bispecific antibodies, etc., that comprise (i) such LAG-3-binding fragments, and (ii) a domain capable of binding an epitope of a molecule involved in regulating an immune check point present on the surface of an immune cell. The present invention also pertains to methods of detecting LAG-3, as well as methods of using molecules that bind LAG-3 for stimulating immune responses.Type: GrantFiled: January 12, 2021Date of Patent: January 2, 2024Assignee: MacroGenics, Inc.Inventors: Ross La Motte-Mohs, Kalpana Shah, Douglas H. Smith, Leslie S. Johnson, Paul A. Moore, Ezio Bonvini, Scott Koenig
-
Publication number: 20230399399Abstract: CD19×CD3 bi-specific monovalent diabodies, and particularly, CD19×CD3 bi-specific monovalent Fc diabodies, are capable of simultaneous binding to CD19 and CD3, and are used in the treatment of hematologic malignancies.Type: ApplicationFiled: March 20, 2023Publication date: December 14, 2023Applicant: MacroGenics, Inc.Inventors: Leslie S. Johnson, Ezio Bonvini, Chia-Ying Kao Lam, Paul A. Moore, Liqin Liu, Scott Koenig
-
Patent number: 11840571Abstract: The present invention is directed to bispecific molecules (e.g., diabodies, bispecific antibodies, trivalent binding molecules, etc.) that possess at least one epitope-binding site that is immunospecific for an epitope of PD-1 and at least one epitope-binding site that is immunospecific for an epitope of CTLA-4 (i.e., a “PD-1×CTLA-4 bispecific molecule”). The PD-1×CTLA-4 bispecific molecules of the present invention are capable of simultaneously binding to PD-1 and to CTLA-4, particularly as such molecules are arrayed on the surfaces of human cells. The invention is directed to pharmaceutical compositions that contain such PD-1×CTLA-4 bispecific molecules, and to methods involving the use of such bispecific molecules in the treatment of cancer and other diseases and conditions. The present invention also pertains to methods of using such PD-1×CTLA-4 bispecific molecules to stimulate an immune response.Type: GrantFiled: January 13, 2021Date of Patent: December 12, 2023Assignee: MACROGENICS, INC.Inventors: Leslie S. Johnson, Gurunadh Reddy Chichili, Kalpana Shah, Ross La Motte-Mohs, Paul A. Moore, Ezio Bonvini, Scott Koenig
-
Publication number: 20230357404Abstract: The present invention is directed to selected anti-PD-1 antibodies capable of binding to both cynomolgus monkey PD-1 and to human PD-1 : PD-1 mAb 1, PD-1 mAb 2, PD-1 mAb 3, PD-1 mAb 4, PD-1 mA.b 5, PD-1 mA.b 6, PD-1 mAb 7, PD-1 mAb 8, PD-1 mAb 9, PD-1 mAb 10, PD-1 mAb 11, PD-1 mAb 12, PD-1 mAb 13, PD-1 mAb 14, or PD-1 mAb 15, and to humanized and chimeric versions of such antibodies. The invention additionally pertains to PD-1 -binding molecules that comprise PD-1 binding fragments of such anti-PD-1 antibodies, immunocongugates, and to bispecific molecules, including diabodies, BiTEs, bispecific antibodies, etc., that comprise (i) such PD-1 -binding fragments, and (ii) a domain capable of binding an epitope of a molecule involved in regulating an immune check point present on the surface of an immune cells. The present invention also pertains to methods of using molecules that bind PD-1 for stimulating immune responses, as well as methods of detecting PD-1.Type: ApplicationFiled: February 24, 2023Publication date: November 9, 2023Applicant: MACROGENICS, INC.Inventors: Kalpana Shah, Douglas H. Smith, Ross La Motte-Mohs, Leslie S. Johnson, Paul A. Moore, Ezio Bonvini, Scott Koenig
-
Patent number: 11787871Abstract: The present invention relates to methods of treating or preventing cancer and other diseases using molecules, particularly polypeptides, more particularly immunoglobulins (e.g., antibodies), comprising a variant Fc region, wherein said variant Fc region comprises at least one amino acid modification relative to a wild-type Fc region, which variant Fc region binds an Fc?R that activates a cellular effector (“Fc?RActivating,” such as Fc?RIIA or Fc?RIIIA) and an Fc?R that inhibits a cellular effector (“Fc?RInhibiting,” such as Fc?RIIA) with an altered Ratio of Affinities relative to the respective binding affinities of such Fc?R for the Fc region of the wild-type immunoglobulin. The methods of the invention are particularly useful in preventing, treating, or ameliorating one or more symptoms associated with a disease, disorder, or infection where either an enhanced efficacy of effector cell function mediated by Fc?R is desired (e.g.Type: GrantFiled: May 29, 2020Date of Patent: October 17, 2023Assignee: MacroGenics, Inc.Inventors: Jeffrey B. Stavenhagen, Scott Koenig
-
Publication number: 20230167178Abstract: The present invention relates to bispecific molecules that are capable of localizing an immune effector cell that expresses an activating receptor to a virally infected cell, so as to thereby facilitate the killing of the virally infected cell. In a preferred embodiment, such localization is accomplished using bispecific molecules that are immunoreactive with an activating receptor of an immune effector cell and to an antigen expressed by a cell infected with a virus wherein the antigen is detectably present on the cell infected with the virus at a level that is greater than the level at which the antigen is detected on the virus by the bispecific molecules, and to the use of such bispecific molecules in the treatment of latent viral infections.Type: ApplicationFiled: July 14, 2022Publication date: June 1, 2023Applicants: MacroGenics, Inc., Duke UniversityInventors: Scott Koenig, Leslie S. Johnson, Chia-Ying Kao Lam, Liqin Liu, Jeffrey Lee Nordstrom, Barton F. Haynes, Guido Ferrari
-
Patent number: 11639386Abstract: CD19×CD3 bi-specific monovalent diabodies, and particularly, CD19×CD3 bi-specific monovalent Fc diabodies, are capable of simultaneous binding to CD19 and CD3, and are used in the treatment of hematologic malignancies.Type: GrantFiled: March 3, 2020Date of Patent: May 2, 2023Assignee: MacroGenics, Inc.Inventors: Leslie S. Johnson, Ezio Bonvini, Chia-Ying Kao Lam, Paul A. Moore, Liqin Liu, Scott Koenig
-
Patent number: 11623959Abstract: The present invention is directed to selected anti-PD-1 antibodies capable of binding to both cynomolgus monkey PD-1 and to human PD-1: PD-1 mAb 1, PD-1 mAb 2, PD-1 mAb 3, PD-1 mAb 4, PD-1 mAb 5, PD-1 mAb 6, PD-1 mAb 7, PD-1 mAb 8, PD-1 mAb 9, PD-1 mAb 10, PD-1 mAb 11, PD-1 mAb 12, PD-1 mAb 13, PD-1 mAb 14, or PD-1 mAb 15, and to humanized and chimeric versions of such antibodies. The invention additionally pertains to PD-1-binding molecules that comprise PD-1 binding fragments of such anti-PD-1 antibodies, immunocongugates, and to bispecific molecules, including diabodies, BiTEs, bispecific antibodies, etc., that comprise (i) such PD-1-binding fragments, and (ii) a domain capable of binding an epitope of a molecule involved in regulating an immune check point present on the surface of an immune cells. The present invention also pertains to methods of using molecules that bind PD-1 for stimulating immune responses, as well as methods of detecting PD-1.Type: GrantFiled: January 24, 2020Date of Patent: April 11, 2023Assignee: MACROGENICS, INC.Inventors: Kalpana Shah, Douglas H. Smith, Ross La Motte-Mohs, Leslie S. Johnson, Paul A. Moore, Ezio Bonvini, Scott Koenig
-
Publication number: 20230056230Abstract: The present invention is directed to regimens for administering one or more Antibody-Based Molecules that bind PD-1 or PD-L1, and LAG-3 (e.g, a PD-1×LAG-3 bispecific molecule) alone, or in combination with an Antibody-Based Molecule that binds a Tumor Antigen (TA) for the treatment of cancer. The invention particularly concerns the use of such regimens in conjunction with PD-1×LAG-3 bispecific molecules. The invention is directed to the use of such molecules, and to the use of pharmaceutical compositions and pharmaceutical kits that contain such molecules and that facilitate the use of such dosing regimens in the treatment of cancer.Type: ApplicationFiled: December 18, 2020Publication date: February 23, 2023Applicant: MacroGenics, Inc.Inventors: Bradley James Sumrow, Ross La Motte-Mohs, Jon Marc Wigginton, Ezio Bonvini, Paul A. Moore, Scott Koenig, Xiaoyu Zhang
-
Patent number: 11421031Abstract: The present invention relates to bispecific molecules that are capable of localizing an immune effector cell that expresses an activating receptor to a virally infected cell, so as to thereby facilitate the killing of the virally infected cell. In a preferred embodiment, such localization is accomplished using bispecific molecules that are immunoreactive with an activating receptor of an immune effector cell and to an antigen expressed by a cell infected with a virus wherein the antigen is detectably present on the cell infected with the virus at a level that is greater than the level at which the antigen is detected on the virus by the bispecific molecules, and to the use of such bispecific molecules in the treatment of latent viral infections.Type: GrantFiled: June 22, 2020Date of Patent: August 23, 2022Assignees: MacroGenics, Inc., Duke UniversityInventors: Scott Koenig, Leslie S. Johnson, Chia-Ying Kao Lam, Liqin Liu, Jeffrey Lee Nordstrom, Barton F. Haynes, Guido Ferrari
-
Publication number: 20220204625Abstract: The present invention is directed to a combination therapy involving the administration of a first molecule that specifically binds to human B7-H3 and a second molecule that that specifically binds to human PD-1 to a subject for the treatment of cancer and/or inflammation. The invention also concerns pharmaceutical compositions that comprise a first molecule that specifically binds to human B7-H3 and a second molecule that specifically binds to human PD-1 that are capable of mediating, and more preferably enhancing, the activation of the immune system against cancer cells that are associated with any of a variety of human cancers. The invention also relates to the use of such pharmaceutical compositions to treat cancer and other diseases in recipient subjects.Type: ApplicationFiled: September 20, 2021Publication date: June 30, 2022Applicant: MacroGenics, Inc.Inventors: James Vasselli, Jon Marc Wigginton, Ezio Bonvini, Scott Koenig
-
Publication number: 20220041725Abstract: This invention relates to a pharmaceutical composition that comprises a first molecule that specifically binds HER2/neu and a second molecule that specifically binds a cell-surface receptor (or its ligand) that is involved in regulating an immune checkpoint (or the ligand thereof). The invention particularly relates to the embodiment wherein the second molecule binds to PD-1. The invention also relates to the use of such pharmaceutical compositions to treat cancer and other diseases.Type: ApplicationFiled: June 18, 2021Publication date: February 10, 2022Applicant: MacroGenics, Inc.Inventors: Jon Marc Wigginton, Naimish Bharat Pandya, Robert Joseph Lechleider, Scott Koenig, Ezio Bonvini
-
Publication number: 20220041714Abstract: The present invention is directed to bi-specific diabodies that comprise two or more polypeptide chains and which possess at least one Epitope-Binding Site that is immunospecific for an epitope of PD-1 and at least one Epitope-Binding Site that is immunospecific for an epitope of LAG-3 (i.e., a “PD-1×LAG-3 bi-specific diabody”). More preferably, the present invention is directed to bi-specific diabodies that comprise four polypeptide chains and which possess two Epitope-Binding Sites that are immunospecific for one (or two) epitope(s) of PD-1 and two Epitope-Binding Site that are immunospecific for one (or two) epitope(s) of LAG-3 (i.e., a “PD-1×LAG-3 bi-specific, tetra-valent diabody”). The present invention also is directed to such diabodies that additionally comprise an immunoglobulin Fc Domain (“bi-specific Fc diabodies and bi-specific, tetra-valent, Fc diabodies”).Type: ApplicationFiled: July 14, 2021Publication date: February 10, 2022Applicant: MacroGenics, Inc.Inventors: Ezio Bonvini, Leslie S. Johnson, Kalpana Shah, Ross La Motte-Mohs, Paul A. Moore, Scott Koenig
-
Patent number: 11174315Abstract: The present invention is directed to a combination therapy involving the administration of a first molecule that specifically binds to human B7-H3 and a second molecule that specifically binds to human PD-1 to a subject for the treatment of cancer and/or inflammation. The invention also concerns pharmaceutical compositions that comprise a first molecule that specifically binds to human B7-H3 and a second molecule that specifically binds to human PD-1 that are capable of mediating, and more preferably enhancing, the activation of the immune system against cancer cells that are associated with any of a variety of human cancers. The invention also relates to the use of such pharmaceutical compositions to treat cancer and other diseases in recipient subjects.Type: GrantFiled: October 6, 2016Date of Patent: November 16, 2021Assignee: MacroGenics, Inc.Inventors: James Vasselli, Jon Marc Wigginton, Ezio Bonvini, Scott Koenig
-
Patent number: 11098119Abstract: The present invention is directed to bi-specific diabodies that comprise two or more polypeptide chains and which possess at least one Epitope-Binding Site that is immunospecific for an epitope of PD-1 and at least one Epitope-Binding Site that is immunospecific for an epitope of LAG-3 (i.e., a “PD-1×LAG-3 bi-specific diabody”). More preferably, the present invention is directed to bi-specific diabodies that comprise four polypeptide chains and which possess two Epitope-Binding Sites that are immunospecific for one (or two) epitope(s) of PD-1 and two Epitope-Binding Site that are immunospecific for one (or two) epitope(s) of LAG-3 (i.e., a “PD-1×LAG-3 bi-specific, tetra-valent diabody”). The present invention also is directed to such diabodies that additionally comprise an immunoglobulin Fc Domain (“bi-specific Fc diabodies and bi-specific, tetra-valent, Fc diabodies”).Type: GrantFiled: November 13, 2018Date of Patent: August 24, 2021Assignee: MacroGenics, Inc.Inventors: Ezio Bonvini, Leslie S. Johnson, Kalpana Shah, Ross La Motte-Mohs, Paul A. Moore, Scott Koenig