Patents by Inventor Scott Kuindersma

Scott Kuindersma has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250196333
    Abstract: Computer-implemented methods and apparatus for manipulating an object using a robotic device are provided. The method includes associating a first grasp region of an object with an end effector of a robotic device, wherein the first grasp region includes a set of potential grasps achievable by the end effector of the robotic device. The method further includes determining, within the first grasp region, a grasp from among the set of potential grasps, wherein the grasp is determined based, at least in part, on information associated with a capability of the robotic device to perform the grasp, and instructing the robotic device to manipulate the object based on the grasp.
    Type: Application
    Filed: December 15, 2023
    Publication date: June 19, 2025
    Inventors: Mark Petersen, Greg Izatt, Rachel Thomasson, Alberto Rodriguez, Scott Kuindersma
  • Publication number: 20250178190
    Abstract: Systems and methods for determining movement of a robot about an environment are provided. A computing system of the robot (i) receives information including a navigation target for the robot and a kinematic state of the robot; (ii) determines, based on the information and a trajectory target for the robot, a retargeted trajectory for the robot; (iii) determines, based on the retargeted trajectory, a centroidal trajectory for the robot and a kinematic trajectory for the robot consistent with the centroidal trajectory; and (iv) determines, based on the centroidal trajectory and the kinematic trajectory, a set of vectors having a vector for each of one or more joints of the robot.
    Type: Application
    Filed: December 10, 2024
    Publication date: June 5, 2025
    Applicant: Boston Dynamics, Inc.
    Inventors: Robin Deits, Scott Kuindersma, Matthew P. Kelly, Twan Koolen, Yeuhi Abe, Benjamin Stephens
  • Patent number: 12194629
    Abstract: Systems and methods for determining movement of a robot about an environment are provided. A computing system of the robot (i) receives information including a navigation target for the robot and a kinematic state of the robot; (ii) determines, based on the information and a trajectory target for the robot, a retargeted trajectory for the robot; (iii) determines, based on the retargeted trajectory, a centroidal trajectory for the robot and a kinematic trajectory for the robot consistent with the centroidal trajectory; and (iv) determines, based on the centroidal trajectory and the kinematic trajectory, a set of vectors having a vector for each of one or more joints of the robot.
    Type: Grant
    Filed: October 25, 2023
    Date of Patent: January 14, 2025
    Assignee: Boston Dynamics, Inc.
    Inventors: Robin Deits, Scott Kuindersma, Matthew P. Kelly, Twan Koolen, Yeuhi Abe, Benjamin Stephens
  • Publication number: 20240189989
    Abstract: Systems and methods are described for climbing of objects in an environment of a robot based on sensor data. A system can obtain sensor data of the environment. For example, the system can obtain sensor data from one or more sensors of robot. The system can identify the object based on the sensor data. Further, the system can determine that the object is climbable based on determining that the object corresponds to a particular training object. The system can determine that the object corresponds to the particular training object based on a particular characteristic of the object. The system can identify a climbing operation associated with the training object and instruct the robot to climb on the object based on the climbing operation.
    Type: Application
    Filed: December 12, 2023
    Publication date: June 13, 2024
    Inventors: Jared Di Carlo, Kevin Bergamin, Carmine Dario Bellicoso, Scott Kuindersma
  • Publication number: 20240051122
    Abstract: Systems and methods for determining movement of a robot about an environment are provided. A computing system of the robot (i) receives information including a navigation target for the robot and a kinematic state of the robot; (ii) determines, based on the information and a trajectory target for the robot, a retargeted trajectory for the robot; (iii) determines, based on the retargeted trajectory, a centroidal trajectory for the robot and a kinematic trajectory for the robot consistent with the centroidal trajectory; and (iv) determines, based on the centroidal trajectory and the kinematic trajectory, a set of vectors having a vector for each of one or more joints of the robot.
    Type: Application
    Filed: October 25, 2023
    Publication date: February 15, 2024
    Applicant: Boston Dynamics, Inc.
    Inventors: Robin Deits, Scott Kuindersma, Matthew P. Kelly, Twan Koolen, Yeuhi Abe, Benjamin Stephens
  • Patent number: 11833680
    Abstract: Systems and methods for determining movement of a robot about an environment are provided. A computing system of the robot (i) receives information including a navigation target for the robot and a kinematic state of the robot; (ii) determines, based on the information and a trajectory target for the robot, a retargeted trajectory for the robot; (iii) determines, based on the retargeted trajectory, a centroidal trajectory for the robot and a kinematic trajectory for the robot consistent with the centroidal trajectory; and (iv) determines, based on the centroidal trajectory and the kinematic trajectory, a set of vectors having a vector for each of one or more joints of the robot.
    Type: Grant
    Filed: June 25, 2021
    Date of Patent: December 5, 2023
    Assignee: Boston Dynamics, Inc.
    Inventors: Robin Deits, Scott Kuindersma, Matthew P. Kelly, Twan Koolen, Yeuhi Abe, Benjamin Stephens
  • Publication number: 20220410378
    Abstract: Systems and methods for determining movement of a robot about an environment are provided. A computing system of the robot (i) receives information including a navigation target for the robot and a kinematic state of the robot; (ii) determines, based on the information and a trajectory target for the robot, a retargeted trajectory for the robot; (iii) determines, based on the retargeted trajectory, a centroidal trajectory for the robot and a kinematic trajectory for the robot consistent with the centroidal trajectory; and (iv) determines, based on the centroidal trajectory and the kinematic trajectory, a set of vectors having a vector for each of one or more joints of the robot.
    Type: Application
    Filed: June 25, 2021
    Publication date: December 29, 2022
    Inventors: Robin Deits, Scott Kuindersma, Matthew P. Kelly, Twan Koolen, Yeuhi Abe, Benjamin Stephens
  • Patent number: 11498203
    Abstract: A wearable system includes an exosuit or exoskeleton; an actuator(s) configured to generate force in the exosuit or exoskeleton; a sensor(s) configured to measure information for evaluating an objective function associated with providing physical assistance to the wearer, an interaction between the wearer and the exosuit or exoskeleton, and/or an operation of the exosuit or exoskeleton; and a controller(s) configured to: actuate the actuator(s) according to an actuation profile(s), evaluate the objective function based on the information measured by the at least one sensor to determine a resulting change in the objective function, adjust a parameter(s) of the actuation profile(s) based on the resulting change in the objective function, and continue to actuate, evaluate, and adjust to optimize the actuation parameter(s) for maximizing or minimizing the objective function.
    Type: Grant
    Filed: July 15, 2017
    Date of Patent: November 15, 2022
    Assignee: President and Fellows of Harvard College
    Inventors: Ye Ding, Ignacio Galiana Bujanda, Jinsoo Kim, Myunghee Kim, Scott Kuindersma, Sangjun Lee, Kathleen E. O'Donnell, Christopher J. Siviy, Conor J. Walsh
  • Publication number: 20200276698
    Abstract: A wearable system comprising an exosuit or exoskeleton; an actuator(s) configured to generate force in the exosuit or exoskeleton; a sensor(s) configured to measure information for evaluating an objective function associated with providing physical assistance to the wearer, an interaction between the wearer and the exosuit or exoskeleton, and/or an operation of the exosuit or exoskeleton; and a controller(s) configured to: actuate the actuator(s) according to an actuation profile(s), evaluate the objective function based on the information measured by the at least one sensor to determine a resulting change in the objective function, adjust a parameter(s) of the actuation profile(s) based on the resulting change in the objective function, and continue to actuate, evaluate, and adjust to optimize the actuation parameter(s) for maximizing or minimizing the objective function.
    Type: Application
    Filed: July 15, 2017
    Publication date: September 3, 2020
    Inventors: Ye Ding, Ignacio Galiana Bujanda, Jinsoo Kim, Myunghee Kim, Scott Kuindersma, Sangjun Lee, Kathleen E. O'Donnell, Christopher J. Siviy, Conor J. Walsh