Patents by Inventor Scott L. Swartz

Scott L. Swartz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11761923
    Abstract: An amperometric electrochemical sensor for measuring the concentrations of one or more target gas species in a gas sample or gas stream, the sensor having at least one electrochemical cell with first and second surface electrodes, an electrolyte layer and a passive signal amplifying layer (“SAL”) comprising electrically conductive material like platinum, wherein at least a portion of the electrolyte layer is located between the surface electrodes and the SAL such that the SAL is in direct, conductive contact with the electrolyte layer but is not in direct contact with the surface electrodes. Sensor systems and detection methods are also provided.
    Type: Grant
    Filed: March 17, 2017
    Date of Patent: September 19, 2023
    Assignee: NEXTECH MATERIALS, LTD.
    Inventors: Gene B. Arkenberg, Scott L. Swartz, Matthew M. Seabaugh
  • Patent number: 10454118
    Abstract: A sulfur tolerant anode current collector material includes a mesh or foam that includes a cermet. The cermet includes a metallic component and a ceramic component. The metallic component includes nickel, an alloy including nickel and cobalt, or a mixture including a nickel compound and a cobalt compound. The ceramic component includes a mixed conducting electrolyte material.
    Type: Grant
    Filed: December 8, 2009
    Date of Patent: October 22, 2019
    Assignee: NEXCERIS INNOVATION HOLDINGS, LLC
    Inventors: Michael J. Day, Scott L. Swartz, Matthew M. Seabaugh, Paul H. Matter
  • Patent number: 10302611
    Abstract: Provided are a composition including a hydrogen-selective porous composite, a hydrogen gas sensor device including the hydrogen-selective porous composite, a kit for detecting hydrogen including the hydrogen gas sensor device, and a method for detecting hydrogen including contacting a hydrogen-comprising gas to the hydrogen selective porous composite. The method may include, for example: providing a hydrogen-comprising gas; providing a hydrogen-selective porous composite, the hydrogen-selective porous composite comprising cerium oxide; contacting the hydrogen-comprising gas to the hydrogen-selective porous composite; and selectively detecting hydrogen in the hydrogen-comprising gas according to a decrease in an electrical resistance of the hydrogen-selective porous composite.
    Type: Grant
    Filed: April 20, 2015
    Date of Patent: May 28, 2019
    Assignee: NEXCERIS INNOVATION HOLDINGS, LLC
    Inventors: Christopher T. Holt, Stephen R. Cummings, Scott L. Swartz, Lora B. Thrun
  • Publication number: 20190033248
    Abstract: An amperometric electrochemical sensor for measuring the concentrations of one or more target gas species in a gas sample or gas stream, the sensor having at least one electrochemical cell with first and second surface electrodes, an electrolyte layer and a passive signal amplifying layer (“SAL”) comprising electrically conductive material like platinum, wherein at least a portion of the electrolyte layer is located between the surface electrodes and the SAL such that the SAL is in direct, conductive contact with the electrolyte layer but is not in direct contact with the surface electrodes. Sensor systems and detection methods are also provided.
    Type: Application
    Filed: March 17, 2017
    Publication date: January 31, 2019
    Inventors: Gene B. Arkenberg, Scott L. Swartz, Matthew M. Seabaugh
  • Patent number: 9673469
    Abstract: Electrode materials systems for planar solid oxide fuel cells with high electrochemical performance including anode materials that provide exceptional long-term durability when used in reducing gases and cathode materials that provide exceptional long-term durability when used in oxygen-containing gases. The anode materials may comprise a cermet in which the metal component is a cobalt-nickel alloy. These anode materials provide exceptional long-term durability when used in reducing gases, e.g., in SOFCs with sulfur contaminated fuels. The cermet also may comprise a mixed-conducting ceria-based electrolyte material. The anode may have a bi-layer structure. A cerium oxide-based interfacial layer with mixed electronic and ionic conduction may be provided at the electrolyte/anode interface.
    Type: Grant
    Filed: August 29, 2014
    Date of Patent: June 6, 2017
    Assignee: NEXTECH MATERIALS, LTD.
    Inventors: Michael J. Day, Scott L. Swartz, Matthew M. Seabaugh, Paul H. Matter, Jared R. Archer
  • Publication number: 20160343459
    Abstract: A gas monitoring system and method are provided. In one embodiment, a gas monitoring system includes a gas monitoring unit in a reactor containment environment, a gas monitoring unit controller in a reactor non-containment environment, and a high temperature or industry compliant cable interconnecting the gas monitoring unit with the gas monitoring unit controller. Various sensors on the gas monitoring unit detect conditions of the reactor containment environment, including hydrogen gas concentration.
    Type: Application
    Filed: May 17, 2016
    Publication date: November 24, 2016
    Inventors: Douglas A. Mitchell, Lora B. Thrun, Stephen R. Cummings, Chad T. Sellers, Andrew P. Smith, William J. Dawson, Scott L. Swartz
  • Patent number: 9304102
    Abstract: An amperometric electrochemical sensor configured to be operable in an oxidizing atmosphere and under an applied bias to exhibit enhanced reduction of oxygen molecules at the sensing electrode in the presence of one or more target gas species and a resulting measurable increase in oxygen ion flux through the cell. The sensor has an electrolyte membrane, a sensing electrode on the electrolyte membrane, and a counter electrode on the electrolyte membrane, wherein the sensing electrode includes at least one molybdate or tungstate compound. An electrochemical sensor system is also provided, along with a method of detecting the concentration of one or more of NOx and NH3 in a gas sample or stream.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: April 5, 2016
    Assignee: NexTech Materials, Ltd.
    Inventors: Michael J. Day, Scott L. Swartz, Lora B. Thrun, Buddy E. McCormick
  • Publication number: 20160077044
    Abstract: An amperometric electrochemical sensor for measuring the concentrations of two or more target gas species in a gas sample or gas stream, wherein the sensor includes first and second electrochemical cells having respective first and second active electrodes, the electrochemical cells further including an electrolyte membrane and a counter electrode, wherein the first electrochemical cell exhibits an additive response with respect to a first and second ones of the target gas species and the second electrochemical cell exhibits a selective response to the first target gas species in the presence of the second target gas species such that the sensor is capable of measuring the respective concentrations of the first and second target gas species.
    Type: Application
    Filed: September 14, 2015
    Publication date: March 17, 2016
    Inventors: Gene B. Arkenberg, Scott L. Swartz, Matthew M. Seabaugh, Lora B. Thrun
  • Publication number: 20150226718
    Abstract: Provided are a composition including a hydrogen-selective porous composite, a hydrogen gas sensor device including the hydrogen-selective porous composite, a kit for detecting hydrogen including the hydrogen gas sensor device, and a method for detecting hydrogen including contacting a hydrogen-comprising gas to the hydrogen selective porous composite. The method may include, for example: providing a hydrogen-comprising gas; providing a hydrogen-selective porous composite, the hydrogen-selective porous composite comprising cerium oxide; contacting the hydrogen-comprising gas to the hydrogen-selective porous composite; and selectively detecting hydrogen in the hydrogen-comprising gas according to a decrease in an electrical resistance of the hydrogen-selective porous composite.
    Type: Application
    Filed: April 20, 2015
    Publication date: August 13, 2015
    Inventors: Christopher T. Holt, Stephen R. Cummings, Scott L. Swartz, Lora B. Thrun
  • Patent number: 9054348
    Abstract: An electrochemical device having one or more solid oxide fuel cells (SOFCs), each of the SOFCs including a cathode, an anode, and an electrolyte layer positioned between the cathode and anode; and at least one additional component comprising a metallic substrate having an electronically conductive, chromium-free perovskite coating deposited directly thereon. The perovskite coating has the formula ABO3, wherein A is a lanthanide element or Y, and B is a mixture of two or more transition elements, with the A site undoped by any alkaline earth element, and the perovskite coating exhibits limited or no ionic transport of oxygen.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: June 9, 2015
    Assignee: NextTech Materials, Ltd.
    Inventors: Matthew M. Seabaugh, Sergio Ibanez, Scott L. Swartz
  • Patent number: 9011778
    Abstract: A hydrogen sensitive composite sensing material based on cerium oxide with or without additives to enhance sensitivity to hydrogen, reduce cross-sensitivities to interfering gases, or lower the operating temperature of the sensor, and a device incorporating these hydrogen sensitive composite materials including a support, electrodes applied to the support, and a coating of hydrogen sensitive composite material applied over the electroded surface. The sensor may have in integral heater. The sensor may have a tubular geometry with the heater being inserted within the tube. A gas sensor device may include a support, electrodes applied to the support, and a dual sensor element to cancel unwanted effects on baseline resistance such as those resulting from atmospheric temperature changes. The hydrogen sensitive composite material or other gas sensitive materials may be used in the dual element gas sensor device.
    Type: Grant
    Filed: October 12, 2007
    Date of Patent: April 21, 2015
    Assignee: NexTech Materials, Ltd.
    Inventors: Christopher T. Holt, Stephen R. Cummings, Scott L. Swartz, Lora B. Thrun
  • Publication number: 20150093680
    Abstract: Electrode materials systems for planar solid oxide fuel cells with high electrochemical performance including anode materials that provide exceptional long-term durability when used in reducing gases and cathode materials that provide exceptional long-term durability when used in oxygen-containing gases. The anode materials may comprise a cermet in which the metal component is a cobalt-nickel alloy. These anode materials provide exceptional long-term durability when used in reducing gases, e.g., in SOFCs with sulfur contaminated fuels. The cermet also may comprise a mixed-conducting ceria-based electrolyte material. The anode may have a bi-layer structure. A cerium oxide-based interfacial layer with mixed electronic and ionic conduction may be provided at the electrolyte/anode interface.
    Type: Application
    Filed: August 29, 2014
    Publication date: April 2, 2015
    Inventors: Michael J. Day, Scott L. Swartz, Matthew M. Seabaugh, Paul H. Matter, Jared R. Archer
  • Patent number: 8974657
    Abstract: Amperometric ceramic electrochemical cells comprise, in one embodiment, an electrolyte layer, a sensing electrode layer comprising a ceramic phase and a metallic phase, and a counter electrode layer, wherein the cell is operable in an oxidizing atmosphere and under an applied bias to exhibit enhanced reduction of oxygen molecules at the sensing electrode in the presence of one or more target gases such as nitrogen oxides (NOX) or NH3 and a resulting increase in oxygen ion flux through the cell. In another embodiment, amperometric ceramic electrochemical cells comprise an electrolyte layer comprising a continuous network of a first material which is ionically conducting at an operating temperature of about 200 to 550° C.; a counter electrode layer comprising a continuous network of a second material which is electrically conductive at an operating temperature of about 200 to 550° C.
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: March 10, 2015
    Assignee: NexTech Materials Ltd.
    Inventors: Scott L. Swartz, Matthew M. Seabaugh, Lora B. Thrun, Paul H. Matter, Michael J. Day, William J. Dawson, Buddy E. McCormick
  • Patent number: 8968956
    Abstract: A repeat unit for a fuel cell stack, the repeat unit having: a conductive interconnect plate; an electrolyte-supported fuel cell, wherein a dense sealing perimeter extends around the entire perimeter of the fuel cell; a cathode gasket adjacent the cathode side of the fuel cell; and an anode gasket adjacent the anode side of the fuel cell. First and second air manifolding ports, and first and second fuel manifolding ports are provided in each of the interconnect plate, dense sealing perimeter of the fuel cell, cathode gasket and anode gasket. An SOFC stack having an aligned stack of a plurality of repeat units is also provided, as well as an SOFC stack configured for cascade fuel flow.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: March 3, 2015
    Assignee: NexTech Materials, Ltd
    Inventors: Michael J. Day, Scott L. Swartz, Gene B. Arkenberg, Chad T. Sellers
  • Patent number: 8828618
    Abstract: Electrode materials systems for planar solid oxide fuel cells with high electrochemical performance including anode materials that provide exceptional long-term durability when used in reducing gases and cathode materials that provide exceptional long-term durability when used in oxygen-containing gases. The anode materials may comprise a cermet in which the metal component is a cobalt-nickel alloy. These anode materials provide exceptional long-term durability when used in reducing gases, e.g., in SOFCs with sulfur contaminated fuels. The cermet also may comprise a mixed-conducting ceria-based electrolyte material. The anode may have a bi-layer structure. A cerium oxide-based interfacial layer with mixed electronic and ionic conduction may be provided at the electrolyte/anode interface.
    Type: Grant
    Filed: December 7, 2007
    Date of Patent: September 9, 2014
    Assignee: NexTech Materials, Ltd.
    Inventors: Michael J. Day, Scott L. Swartz, Matthew M. Seabaugh, Paul H. Matter, Jared R. Archer
  • Publication number: 20120264031
    Abstract: An electrochemical device having one or more solid oxide fuel cells (SOFCs), each of the SOFCs including a cathode, an anode, and an electrolyte layer positioned between the cathode and anode; and at least one additional component comprising a metallic substrate having an electronically conductive, chromium-free perovskite coating deposited directly thereon. The perovskite coating has the formula ABO3, wherein A is a lanthanide element or Y, and B is a mixture of two or more transition elements, with the A site undoped by any alkaline earth element, and the perovskite coating exhibits limited or no ionic transport of oxygen.
    Type: Application
    Filed: April 13, 2012
    Publication date: October 18, 2012
    Inventors: Matthew M. Seabaugh, Sergio Ibanez, Scott L. Swartz
  • Publication number: 20120107714
    Abstract: A repeat unit for a fuel cell stack, the repeat unit having: a conductive interconnect plate; an electrolyte-supported fuel cell, wherein a dense sealing perimeter extends around the entire perimeter of the fuel cell; a cathode gasket adjacent the cathode side of the fuel cell; and an anode gasket adjacent the anode side of the fuel cell. First and second air manifolding ports, and first and second fuel manifolding ports are provided in each of the interconnect plate, dense sealing perimeter of the fuel cell, cathode gasket and anode gasket. An SOFC stack having an aligned stack of a plurality of repeat units is also provided, as well as an SOFC stack configured for cascade fuel flow.
    Type: Application
    Filed: September 20, 2011
    Publication date: May 3, 2012
    Inventors: Michael J. Day, Scott L. Swartz, Gene B. Arkenberg, Chad T. Sellers
  • Publication number: 20120055789
    Abstract: Amperometric ceramic electrochemical cells comprise, in one embodiment, an electrolyte layer, a sensing electrode layer comprising a ceramic phase and a metallic phase, and a counter electrode layer, wherein the cell is operable in an oxidizing atmosphere and under an applied bias to exhibit enhanced reduction of oxygen molecules at the sensing electrode in the presence of one or more target gases such as nitrogen oxides (NOX) or NH3 and a resulting increase in oxygen ion flux through the cell. In another embodiment, amperometric ceramic electrochemical cells comprise an electrolyte layer comprising a continuous network of a first material which is ionically conducting at an operating temperature of about 200 to 550° C.; a counter electrode layer comprising a continuous network of a second material which is electrically conductive at an operating temperature of about 200 to 550° C.
    Type: Application
    Filed: September 3, 2010
    Publication date: March 8, 2012
    Inventors: Scott L. Swartz, Matthew M. Seabaugh, Lora B. Thrun, Paul H. Matter, Michael J. Day, William J. Dawson, Buddy E. McCormick
  • Publication number: 20100167169
    Abstract: A sulfur tolerant anode current collector material includes a mesh or foam that includes a cermet. The cermet includes a metallic component and a ceramic component. The metallic component includes nickel, an alloy including nickel and cobalt, or a mixture including a nickel compound and a cobalt compound. The ceramic component includes a mixed conducting electrolyte material.
    Type: Application
    Filed: December 8, 2009
    Publication date: July 1, 2010
    Applicant: NexTech Materials, Ltd
    Inventors: Michael J. Day, Scott L. Swartz, Matthew M. Seabaugh, Paul H. Matter
  • Patent number: 7595127
    Abstract: A method of making ceramic electrode materials comprising intimate mixtures of two or more components, including at least one nanoscale ionically conducting ceramic electrolyte material (e.g., yttrium-stabilized zirconia, gadolinium-doped ceria, samarium-doped ceria, etc.) and at least one powder of an electrode material, which may be an electrically conducting ceramic electrode material (e.g., lanthanum strontium manganite, praseodymium strontium manganese iron oxide, lanthanum strontium ferrite, lanthanum strontium cobalt ferrite, etc.) or a precursor of a metallic electrode material (e.g., nickel oxide, copper oxide, etc.). The invention also includes anode and cathode coatings and substrates for solid oxide fuel cells prepared by this method.
    Type: Grant
    Filed: June 28, 2002
    Date of Patent: September 29, 2009
    Assignee: NexTech Materials, Ltd.
    Inventors: Matthew M. Seabaugh, Scott L. Swartz