Patents by Inventor Scott Limb

Scott Limb has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180114659
    Abstract: A first structure has alternating fingers of first and second materials, the first material having a higher thermal conductivity than the second material, a second structure has alternating fingers of third and fourth materials, positioned to selectively contact the first structure, and an actuator connected to move the second structure. A method of manufacturing a heat switch includes forming a first structure in a first material having finger separated from each other by gaps, forming a second structure in the first material having fingers at least partially separated from each other by gaps, positioning the first and second structure adjacent to and in contact with each other, and connecting the second structure to an actuator. A method of operating includes receiving an activation signal at an actuator, and using the actuator to move one structure relative to another structure to change alignment between two regions of different thermal conductivity.
    Type: Application
    Filed: March 21, 2016
    Publication date: April 26, 2018
    Applicant: BASF SE
    Inventors: David Eric SCHWARTZ, Yunda WANG, Scott LIMB, Sean GARNER, Sylvia SMULLIN, James ZESCH, Craig ELDERSHAW, David JOHNSON, Martin SHERIDAN
  • Patent number: 9903767
    Abstract: A thermionic sensor is disclosed. The sensor includes a sensor housing at least partially defining an emission chamber in which at least a partial vacuum is maintained; a cathode disposed in the emission chamber; an anode disposed in the emission chamber and spaced apart from the cathode; and an electrically conductive layer disposed in the emission chamber facing the anode and cathode. The thermionic sensor is configured to output a detection signal when the anode and cathode are at substantially the same temperature.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: February 27, 2018
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Saroj Kumar Sahu, Scott Limb, Francisco E. Torres
  • Publication number: 20160178452
    Abstract: A thermionic sensor is disclosed. The sensor includes a sensor housing at least partially defining an emission chamber in which at least a partial vacuum is maintained; a cathode disposed in the emission chamber; an anode disposed in the emission chamber and spaced apart from the cathode; and an electrically conductive layer disposed in the emission chamber facing the anode and cathode. The thermionic sensor is configured to output a detection signal when the anode and cathode are at substantially the same temperature.
    Type: Application
    Filed: December 18, 2014
    Publication date: June 23, 2016
    Inventors: Saroj Kumar Sahu, Scott Limb, Francisco E. Torres
  • Patent number: 9182454
    Abstract: Improved electric field (steered-electron electric-field, or SEEF) sensors and methods of manufacturing the same are provided. The SEEF sensors described herein may have increased sensitivity to low-frequency electric fields while being smaller than previously known sensors, and may allow for low-power electric field detection. The invention described herein allows for sensitive, long-term electric field monitoring for applications ranging from personnel detection to underground facility monitoring, as well as extraordinarily small vector sensing (full Poynting vector) for compact direction-finding of emitters of interest. Exemplary electric field sensors may accurately sense, measure, characterize and/or transmit electric field data over a wide frequency range. Importantly, such sensing, measuring, and/or characterizing do not require any physical or resistive contact between the sensor and a source of an electric field.
    Type: Grant
    Filed: May 10, 2012
    Date of Patent: November 10, 2015
    Assignees: Leidos, Inc., Palo Alto Research Center Incorporated
    Inventors: Kirt Reed Williams, Scott Limb, Dirk De Bruyker
  • Patent number: 8765226
    Abstract: A patterned layer over a wafer is produced by depositing a print-patterned mask structure. Energized particles of a target material are deposited over the wafer and the print-patterned mask such that particles of said target material incident on the mask structure enter the mask structure body and minimally accumulate, if at all, on the surface of the mask structure, and otherwise the particles of target material accumulate as a generally uniform layer over the wafer. The print-patterned mask structure, including particles of target material therein, is removed leaving the generally uniform layer of target material as a patterned layer over the wafer.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: July 1, 2014
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Scott Limb, Uma Srinivasan
  • Patent number: 8562117
    Abstract: A phase change ink printer may be operated so that multiple pressure pulses are applied to the ink in an ink flow path of the printer during a time that the ink is changing phase. During the phase change, a portion of the ink in the ink flow path is in liquid phase and another portion of the ink is in solid phase. The pressure pulses are applied at least to the liquid phase ink in the ink flow path. The phase change may involve a transition from solid to liquid phase, such as during a start-up operation, or may involve a transition from a liquid phase to a solid phase, such as during a power down operation. Application of pressure during either of these operations serves to reduce bubbles and voids in the phase change ink.
    Type: Grant
    Filed: February 7, 2011
    Date of Patent: October 22, 2013
    Assignee: Palo Alto Research Center Incorporated
    Inventor: Scott Limb
  • Patent number: 8551556
    Abstract: High aspect ratio structures can be obtained by print-patterning masking features in feature stacks such that each feature has a lateral edge which is aligned in a plane roughly perpendicular to the plane of the substrate on which the features are formed. Due to the differential lateral spreading between features formed on a substrate and formed atop other features, the print head is indexed less than the radius of a droplet to a position where a droplet ejected by the print head forms an upper feature atop a lower feature such that the lateral edges of the upper and lower features are aligned in the plane roughly perpendicular to the plane of the substrate. Feature stacks of two or more features may provide a vertical (or re-entrant) sidewall mask for formation of high aspect ratio structures, by e.g., electroplating, etc.
    Type: Grant
    Filed: November 20, 2007
    Date of Patent: October 8, 2013
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Eric Shrader, Uma Srinivasan, Clark Crawford, Scott Limb
  • Patent number: 8506063
    Abstract: A print head assembly for an ink jet printer includes an ink flow path configured to allow passage of a phase-change ink. A pressure unit is fluidically coupled to the ink flow path to apply a pressure to the ink. The applied pressure is controlled by a control unit during a time that the ink in the ink flow path is undergoing a phase change. During the phase change, a portion of the ink in a first region of the ink flow path is in liquid phase and another portion of the ink in another region of the ink flow path is in solid phase. A constant or variable pressure can be applied at least to the liquid phase portion of the ink during a phase transition from a liquid phase to a solid phase or from a solid phase to a liquid phase.
    Type: Grant
    Filed: February 7, 2011
    Date of Patent: August 13, 2013
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Scott Limb, John S. Paschkewitz, Eric J. Shrader
  • Publication number: 20120169820
    Abstract: A patterned layer over a wafer is produced by depositing a print-patterned mask structure. Energized particles of a target material are deposited over the wafer and the print-patterned mask such that particles of said target material incident on the mask structure enter the mask structure body and minimally accumulate, if at all, on the surface of the mask structure, and otherwise the particles of target material accumulate as a generally uniform layer over the wafer. The print-patterned mask structure, including particles of target material therein, is removed leaving the generally uniform layer of target material as a patterned layer over the wafer.
    Type: Application
    Filed: March 13, 2012
    Publication date: July 5, 2012
    Applicant: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: Scott Limb, Uma Srinivasan
  • Patent number: 7955783
    Abstract: A method for masking regions of photoresist in the manufacture of a soldermask for printed circuit boards is disclosed. Following application of photoresist over patterned traces on a substrate, a sheet-like thin film is applied over the photosensitive material. The thin film may adhere to the photosensitive material by way of the adhesive state of the photosensitive material or by way of an adhesive applied to the photosensitive material or the thin film or carried by the thin film. Digital mask printing may proceed on the surface of the thin film. The photosensitive material may then be exposed through the printed photomask, the thin film (with photomask) removed, and the photosensitive material developed.
    Type: Grant
    Filed: November 9, 2007
    Date of Patent: June 7, 2011
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Eric Shrader, Uma Srinivasan, Clark Crawford, Scott Limb
  • Patent number: 7749916
    Abstract: A digital lithographic process first deposits a mask layer comprised of print patterned mask features. The print patterned mask features define gaps into which a target material may be deposited, preferably through a digital lithographic process. The target material is cured or hardened, if necessary, into target features. The mask layer is then selectively removed. The remaining target features may then be used as exposure or etch masks, physical structures such as fluid containment elements, etc. Fine feature widths, narrower the minimum width of the print patterned mask features, may be obtained while realizing the benefits of digital lithography in the manufacturing process.
    Type: Grant
    Filed: March 11, 2008
    Date of Patent: July 6, 2010
    Assignee: Palo Alto Research Center Incorporated
    Inventors: William Wong, Scott Limb, Michael Chabinyc, Beverly Russo, Rene Lujan
  • Publication number: 20100006146
    Abstract: A semiconductor or similar body used, for example, for a solar cell is examined for the physical locations of characteristics effecting its performance, such as grain boundaries, areas of relatively higher sheet resistance, bulk resistance, shortened carrier lifetime, etc. A grid array layout for conductive lines may be specifically tailored such it is positioned over less efficient photo-generative regions of the body to, for example, minimize shadowing of more efficient regions, provide a short conduction path for regions of shortened carrier lifetime, etc. The grid array layout may then be formed on the surface of the body, for example by a digital lithographic process, to accommodate cell-by-cell and/or body-by-body variations in the performance characteristics. The tailored grid array provides increased overall photo-generative efficiency of the completed solar cell.
    Type: Application
    Filed: July 8, 2008
    Publication date: January 14, 2010
    Applicant: Palo Alto Research Center Incorporated
    Inventors: Scott Limb, Francisco Torres
  • Publication number: 20090185018
    Abstract: A digital lithography system including a droplet source (printhead) for selectively ejecting liquid droplets of a phase-change masking material, and an imaging system for capturing (generating) image data representing printed features formed by the ejected liquid droplets. The system also includes a digital control system that detects defects in the printed features, for example, by comparing the image data with stored image data. The digital control system then modifies the printed feature to correct the defect, for example, by moving the printhead over the defect and causing the printhead to eject droplets onto the defect's location. In one embodiment, a single-printhead secondary printer operates in conjunction with a multi-printhead main printer to correct defects.
    Type: Application
    Filed: August 15, 2005
    Publication date: July 23, 2009
    Applicant: Palo Alto Research Center Incorporated
    Inventors: Steven Ready, William Wong, Scott Limb
  • Publication number: 20090155732
    Abstract: A patterned layer over a wafer is produced by depositing a print-patterned mask structure. Energized particles of a target material are deposited over the wafer and the print-patterned mask such that particles of said target material incident on the mask structure enter the mask structure body and minimally accumulate, if at all, on the surface of the mask structure, and otherwise the particles of target material accumulate as a generally uniform layer over the wafer. The print-patterned mask structure, including particles of target material therein, is removed leaving the generally uniform layer of target material as a patterned layer over the wafer.
    Type: Application
    Filed: December 13, 2007
    Publication date: June 18, 2009
    Applicant: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: Scott Limb, Uma Srinivasan
  • Publication number: 20090139868
    Abstract: A print-patterned structure may be used as a self-aligned etch and deposition mask. A method of forming conductive lines and other similar features over a plurality of layers comprises forming a print-patterned structure over a first layer. The print-patterned structure is used as an etch mask to expose a portion of a second layer. A seed layer is formed over the exposed portion of the second layer, using the print-patterned structure as a deposition mask. Conductive lines or other features may be formed, for example, by electroplating using the seed layer as a contact pad and the print-patterned structure as deposition mask. The present invention is particularly useful in the formation of features for solar cells and the like where the print-patterned structure may be used to form high aspect ratio features.
    Type: Application
    Filed: December 3, 2007
    Publication date: June 4, 2009
    Applicant: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: Eric Shrader, Scott Limb
  • Publication number: 20090130298
    Abstract: High aspect ratio structures can be obtained by print-patterning masking features in feature stacks such that each feature has a lateral edge which is aligned in a plane roughly perpendicular to the plane of the substrate on which the features are formed. Due to the differential lateral spreading between features formed on a substrate and formed atop other features, the print head is indexed less than the radius of a droplet to a position where a droplet ejected by the print head forms an upper feature atop a lower feature such that the lateral edges of the upper and lower features are aligned in the plane roughly perpendicular to the plane of the substrate. Feature stacks of two or more features may provide a vertical (or re-entrant) sidewall mask for formation of high aspect ratio structures, by e.g., electroplating, etc.
    Type: Application
    Filed: November 20, 2007
    Publication date: May 21, 2009
    Applicant: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: Eric Shrader, Uma Srinivasan, Clark Crawford, Scott Limb
  • Publication number: 20090123873
    Abstract: A method for masking regions of photoresist in the manufacture of a soldermask for printed circuit boards is disclosed. Following application of photoresist over patterned traces on a substrate, a sheet-like thin film is applied over the photosensitive material. The thin film may adhere to the photosensitive material by way of the adhesive state of the photosensitive material or by way of an adhesive applied to the photosensitive material or the thin film or carried by the thin film. Digital mask printing may proceed on the surface of the thin film. The photosensitive material may then be exposed through the printed photomask, the thin film (with photomask) removed, and the photosensitive material developed.
    Type: Application
    Filed: November 9, 2007
    Publication date: May 14, 2009
    Applicant: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: Eric Shrader, Uma Srinivasan, Clark Crawford, Scott Limb
  • Patent number: 7498119
    Abstract: A print patterned mask is formed a digital lithographic process on the surface of a photoresist or similar material layer. The print patterned mask is then used as a development or etching mask, and the underlying layer overdeveloped or overetched to undercut the print patterned mask. The mask may be removed and the underlying structure used an etch mask or as a final structure. Fine feature widths, narrower the minimum width of the print patterned mask features, may be obtained while realizing the benefits of digital lithography in the manufacturing process.
    Type: Grant
    Filed: January 20, 2006
    Date of Patent: March 3, 2009
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Scott Limb, William Wong, Steven Ready, Michael Chabinyc
  • Publication number: 20080153014
    Abstract: A digital lithographic process first deposits a mask layer comprised of print patterned mask features. The print patterned mask features define gaps into which a target material may be deposited, preferably through a digital lithographic process. The target material is cured or hardened, if necessary, into target features. The mask layer is then selectively removed. The remaining target features may then be used as exposure or etch masks, physical structures such as fluid containment elements, etc. Fine feature widths, narrower the minimum width of the print patterned mask features, may be obtained while realizing the benefits of digital lithography in the manufacturing process.
    Type: Application
    Filed: March 11, 2008
    Publication date: June 26, 2008
    Applicant: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: William Wong, Scott Limb, Michael Chabinyc, Beverly Russo, Rene A. Lujan
  • Patent number: 7384568
    Abstract: Susceptibility of darkfield etch masks (majority of the mask area is opaque) to pinhole defects, transferred pattern, non-uniformity, etc. due to ejector dropout or drop misdirection, and long duty cycles due to large-area coverage, when using digital lithography (or print patterning) is addressed by using a clear-field print pattern that is then coated with etch resist material. The printed clear field pattern is selectively removed to form an inverse pattern (darkfield) within the coated resist layer. Etching then removes selected portions of an underlying (e.g., encapsulation, conductive, etc.) layer. Removal of the mask produces a layer with large-area features with substantially reduced defects.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: June 10, 2008
    Assignee: Palo Alto Research Center Incorporated
    Inventors: William Wong, Scott Limb, Beverly Russo, Michael Chabinyc, Rene Lujan