Patents by Inventor Scott LYLE

Scott LYLE has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8721707
    Abstract: An endoprosthetic device for treating abdominal aortic aneurysms using suprarenal fixation. A stent ring is anchored in an area above the renal arties using self-flaring barbs that project during the nitinol expansion process. Sutures extend from the stent ring to an area below the renal arties to a bifurcated trunk portion comprising a nitinol fabric on a non-kinking frame. The bifurcated trunk is sealed proximal the iliac arteries and includes iliac leg holders having self-flaring retention struts for non-traumatic holding of iliac leg prosthetics. Suprarenal fixation and collapsible cells having retention projections and barbs that only flare during the nitinol expansion process assist in lowering the devices profile and sheathability for percutaneous delivery and may provide for recapturing the anchored device.
    Type: Grant
    Filed: November 14, 2011
    Date of Patent: May 13, 2014
    Inventors: Donald D. Boucher, Michael Dugery, Kirk L. Johnson, Isaac John Khan, David C. Majercak, Scott Lyle Rush
  • Publication number: 20120059452
    Abstract: An endoprosthetic device for treating abdominal aortic aneurysms using suprarenal fixation. A stent ring is anchored in an area above the renal arties using self-flaring barbs that project during the nitinol expansion process. Sutures extend from the stent ring to an area below the renal arties to a bifurcated trunk portion comprising a nitinol fabric on a non-kinking frame. The bifurcated trunk is sealed proximal the iliac arteries and includes iliac leg holders having self-flaring retention struts for non-traumatic holding of iliac leg prosthetics. Suprarenal fixation and collapsible cells having retention projections and barbs that only flare during the nitinol expansion process assist in lowering the devices profile and sheathability for percutaneous delivery and may provide for recapturing the anchored device.
    Type: Application
    Filed: November 14, 2011
    Publication date: March 8, 2012
    Inventors: Donald D. Boucher, Michael Dugery, Kirk L. Johnson, Issac John Khan, David C. Majercak, Scott Lyle Rush
  • Patent number: 8083792
    Abstract: An endoprosthetic device for treating abdominal aortic aneurysms using suprarenal fixation. A stent ring is anchored in an area above the renal arteries using self-flaring barbs that project during the nitinol expansion process. Sutures extend from the stent ring to an area below the renal arteries to a bifurcated trunk portion comprising a nitinol fabric on a non-kinking frame. The bifurcated trunk is sealed proximal the iliac arteries and includes iliac leg holders having self-flaring retention struts for non-traumatic holding of iliac leg prosthetics. Suprarenal fixation and collapsible cells having retention projections and barbs that only flare during the nitinol expansion process assist in lowering the devices profile and sheathability for percutaneous delivery and may provide for recapturing the anchored device.
    Type: Grant
    Filed: January 24, 2006
    Date of Patent: December 27, 2011
    Assignee: Cordis Corporation
    Inventors: Donald D. Boucher, Michael Dugery, Kirk L. Johnson, Isaac John Khan, David C. Majercak, Scott Lyle Rush
  • Publication number: 20100030255
    Abstract: Delivery systems, components of delivery system, stent graft systems, stent graft delivery systems can be used to treat aortic aneurysms.
    Type: Application
    Filed: June 30, 2009
    Publication date: February 4, 2010
    Inventors: Humberto Berra, Bryan White, Timothy Lostetter, Scott Lyle Rush, John C. Canning
  • Publication number: 20070173929
    Abstract: An endoprosthetic device for treating abdominal aortic aneurysms using suprarenal fixation. A stent ring is anchored in an area above the renal arties using self-flaring barbs that project during the nitinol expansion process. Sutures extend from the stent ring to an area below the renal arties to a bifurcated trunk portion comprising a nitinol fabric on a non-kinking frame. The bifurcated trunk is sealed proximal the iliac arteries and includes iliac leg holders having self-flaring retention struts for non-traumatic holding of iliac leg prosthetics. Suprarenal fixation and collapsible cells having retention projections and barbs that only flare during the nitinol expansion process assist in lowering the devices profile and sheathability for percutaneous delivery and may provide for recapturing the anchored device.
    Type: Application
    Filed: January 24, 2006
    Publication date: July 26, 2007
    Inventors: Donald D. Boucher, Michael Dugery, Kirk L. Johnson, Isaac John Khan, David C. Majercak, Scott Lyle Rush
  • Patent number: 6852122
    Abstract: Medical devices, and in particular implantable medical devices, may be coated to minimize or substantially eliminate a biological organism's reaction to the introduction of the medical device to the organism. The medical devices may be coated with any number of biocompatible materials. Therapeutic drugs, agents or compounds may be mixed with the biocompatible materials and affixed to at least a portion of the medical device. These therapeutic drugs, agents or compounds may also further reduce a biological organism's reaction to the introduction of the medical device to the organism. In addition, these therapeutic drugs, agents and/or compounds may be utilized to promote healing, including the formation of blood clots. Various materials and coating methodologies may be utilized to maintain the drugs, agents or compounds on the medical device until delivered and positioned.
    Type: Grant
    Filed: January 23, 2003
    Date of Patent: February 8, 2005
    Assignee: Cordis Corporation
    Inventor: Scott Lyle Rush
  • Publication number: 20040167572
    Abstract: Medical devices, and in particular implantable medical devices, may be coated to minimize or substantially eliminate a biological organism's reaction to the introduction of the medical device to the organism. The medical devices may be coated with any number of biocompatible materials. Therapeutic drugs, agents or compounds may be mixed with the biocompatible materials and affixed to at least a portion of the medical device. These therapeutic drugs, agents or compounds may also further reduce a biological organism's reaction to the introduction of the medical device to the organism. In addition, these therapeutic drugs, agents and/or compounds may be utilized to promote healing, including the formation of blood clots. Various materials and coating methodologies may be utilized to maintain the drugs, agents or compounds on the medical device until delivered and positioned. Medical devices include stents, grafts, anastomotic devices, perivascular wraps, sutures and staples.
    Type: Application
    Filed: February 20, 2003
    Publication date: August 26, 2004
    Inventors: Noah M. Roth, Scott Lyle Rush, Theresa Scheuble
  • Publication number: 20040148010
    Abstract: Medical devices, and in particular implantable medical devices, may be coated to minimize or substantially eliminate a biological organism's reaction to the introduction of the medical device to the organism. The medical devices may be coated with any number of biocompatible materials. Therapeutic drugs, agents or compounds may be mixed with the biocompatible materials and affixed to at least a portion of the medical device. These therapeutic drugs, agents or compounds may also further reduce a biological organism's reaction to the introduction of the medical device to the organism. In addition, these therapeutic drugs, agents and/or compounds may be utilized to promote healing, including the formation of blood clots. Various materials and coating methodologies may be utilized to maintain the drugs, agents or compounds on the medical device until delivered and positioned.
    Type: Application
    Filed: January 23, 2003
    Publication date: July 29, 2004
    Inventor: Scott Lyle Rush
  • Patent number: 5981211
    Abstract: Methods of maintaining animal cells for product production, for supporting hepatocyte function and viability to treat a patient suffering from hepatic failure and for preserving tissue-specific function of mammalian cells are carried out with a bioreactor containing a feed and waste chamber and a cell chamber separated by a selectively permeable membrane. Within the cell chamber, a biocompatible contracted three-dimensional gel matrix entraps animal cells or genetic modifications thereof, and a liquid phase contains a concentrated solution of the cell product. The bioreactor uses only two chambers to achieve three distinct zones within the bioreactor. The bioreactor can be of either hollow fiber or flat-bed configuration. In the configuration using hollow fibers, the two fluid paths correspond to the cavity surrounding the hollow fibers (the extracapillary space), and to the lumens of the hollow fibers themselves. Both fluid paths have inlet and outlet ports.
    Type: Grant
    Filed: October 7, 1996
    Date of Patent: November 9, 1999
    Assignee: Regents of the University of Minnesota
    Inventors: Wei-Shou Hu, Frank Bernard Cerra, Scott Lyle Nyberg, Matthew Thomas Scholz, Russell A. Shatford