Patents by Inventor Scott M. Hanson

Scott M. Hanson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150051626
    Abstract: An atherectomy device is disclosed, which is rotationally driven by an electric motor. In some designs, the device includes features unavailable on gas turbine-driven systems, such as the storing in memory of low/medium/high preset rotation speeds for particular models of handle, calculations of the amount of saline left in the IV and associated warnings when it gets sufficiently low, and automatic adjustment of the IV pump rate to a predetermined or calculated level when the rotational speed of the motor is changed. The electric motor has far more rotational inertia than a comparable gas turbine, so the system includes a control mechanism that helps prevent damage from excessive torque being applied to the distal end of the drive shaft. When an obstruction at the distal end is detected, by a drop in the motor rotational speed, the motor is released and is allowed to spin freely as a flywheel.
    Type: Application
    Filed: October 30, 2014
    Publication date: February 19, 2015
    Inventors: Jody Lee Rivers, Charles A. Plowe, Cassandra Ann Piippo Svendsen, Walter John Dobrovolny, Michael John Eng, Scott M. Hanson
  • Patent number: 8930427
    Abstract: A data processing apparatus is provided for producing a randomized value. A cell in the data processing apparatus comprises a dielectric oxide layer and stress voltage circuitry is configured to apply a stress voltage across the dielectric oxide layer of the cell to cause an oxide breakdown process to occur. Oxide breakdown detection circuitry is configured to determine a current extent of the oxide breakdown process by measuring a response of the dielectric oxide layer to the stress voltage and randomized value determination circuitry is configured to determine a randomized value in dependence on the current extent of the oxide breakdown process.
    Type: Grant
    Filed: June 2, 2011
    Date of Patent: January 6, 2015
    Assignee: The Regents of the University of Michigan
    Inventors: Nurrachman Chih Yeh Liu, Scott M Hanson, Nathaniel Pinckney, David T Blaauw, Dennis M. Sylvester
  • Publication number: 20140273623
    Abstract: Distal connector assemblies that are on the distal end of medical lead extensions provide increased rigidity by including a rigid holder that contains the electrical connectors. The electrical connectors are separated within the rigid holder by insulative spacers that may be individual items or may be formed from a compliant carrier that the electrical connectors may reside within where the carrier is positioned within the rigid holder. The rigid holder may also contain a set screw block defining set screw bore or the rigid holder may include an integral portion that defines a set screw bore. The integral portion may include a slot to allow a molding pin loaded with the electrical connectors and other components to be dropped into a cavity of the rigid holder.
    Type: Application
    Filed: February 13, 2014
    Publication date: September 18, 2014
    Applicant: Medtronic, Inc.
    Inventors: Scott M. Hanson, Joseph P. Ricci, Adam J. Rivard, Jonathan C. Sell
  • Publication number: 20140276904
    Abstract: Tips for use on a tunneling tool provide the ability to pull an implantable medical lead extension or catheter body through a subcutaneous tunnel. The tips may include a pin with a barb, where the barb is inserted within a compliant portion of a connector body of the lead extension or a catheter body to create an interference fit that allows the connector body or catheter body to be pulled through the tunnel. The tips may include a carrier that has a cavity for the connector body, where the tunneling is performed with the carrier present on the tunneling tool. A body is positioned within the cavity of the carrier to prevent tissue from snagging on and collecting within the carrier. The body may include a tip portion that performs the tunneling function. The carrier may also provide tunneling and/or may be attached to the tunneling tool during tunneling.
    Type: Application
    Filed: February 13, 2014
    Publication date: September 18, 2014
    Applicant: Medtronic, Inc.
    Inventors: Scott M. Hanson, Bruce A. Behymer, Charles T. Bombeck, Douglas S. Cerny, Darrin E. Dickerson, Jefffrey R. Dixon, Phillip C. Falkner, Evan M. Gustafson, Raymond F. McMullen, Thomas I. Miller, Joseph P. Ricci, Adam J. Rivard, Chad C. Whiterabbit
  • Publication number: 20140277315
    Abstract: Kits provide management of implantable lead extensions being implanted by providing a kit body with features that retain the extension in a configuration, with amounts being removed as needed during the implantation procedure. The kit can be present within a sterile field, and the kit body features may be arranged so that a length of a path that the extension forms is approximately equal to a length of the extension needed for the tunnel. The kit body may include features that allow the connectors of the extension as well as implantation tools to be retained within the kit body while being easily accessed when needed during the procedure. The kit may be coupled to the patient during the trial period, as the extension may have an implanted distal connector while having a proximal connector coupled to an external stimulator and while being retained on the kit body.
    Type: Application
    Filed: February 13, 2014
    Publication date: September 18, 2014
    Applicant: Medtronic, Inc.
    Inventors: Scott M. Hanson, Evan M. Gustafson, Joseph P. Ricci, Adam J. Rivard, Joshua D. Trevorrow, Chad C. Whiterabbit
  • Patent number: 8628551
    Abstract: The invention provides a rotational atherectomy system, device and method comprising a flexible, elongated, rotatable drive shaft with an abrasive section within a pre-curved section of the drive shaft. The device may further comprise a concentric or eccentric enlarged diameter section that is at least partially covered with abrasive material to comprise the abrasive section. The abrasive section may further comprise an abrasive crown or burr mounted to the drive shaft. The pre-curved drive shaft allows smaller diameter and/or massive abrasive regions to be used while sweeping larger diameters during high-speed rotation. The pre-curved region is substantially straightened for insertion into vasculature and placement adjacent stenosis by insertion of the guide wire. Removal of guide wire proximally from the pre-curved region allows the drive shaft to return to its pre-curved form for ablation. Reinsertion of the guide wire beyond the pre-curved region straightens the drive shaft for ease of removal.
    Type: Grant
    Filed: October 13, 2009
    Date of Patent: January 14, 2014
    Assignee: Cardiovascular Systems, Inc.
    Inventors: Scott M. Hanson, Walter Dobrovolny, Jeffrey R. Stone
  • Patent number: 8574264
    Abstract: A closure device for sealing a patent foramen ovale (PFO) in the heart includes a left atrial anchor adapted to be placed in a left atrium of the heart, a tether fixedly connected to the left atrial anchor and adapted to extend through the passageway of the PFO, a right atrial anchor adapted to be placed in a right atrium of the heart and moved along the tether, and a lock for securing the position of the right atrial anchor along the tether. The left and right atrial anchors preferably include a plurality of arms formed as loops and may include means for securing each arm in case of fracture in the loop. After the closure device is positioned, a cutting tool may sever the portion of the tether proximal of the right atrial anchor. The closure device can be retrieved during delivery, including by use of a snare catheter.
    Type: Grant
    Filed: September 16, 2006
    Date of Patent: November 5, 2013
    Assignee: St. Jude Medical, Cardiology Division, Inc.
    Inventors: David J. Blaeser, Jerome K. Grudem, Jr., Scott A. Olson, Mark R. Christianson, Scott M. Hanson, Edward J. Anderson, Patrick P. Russo, Dennis W. Wahr
  • Patent number: 8551128
    Abstract: The invention provides a rotational atherectomy system, device and method comprising a flexible, elongated, rotatable drive shaft with an abrasive section within a pre-curved section of the drive shaft. The device may further comprise a concentric or eccentric enlarged diameter section that is at least partially covered with abrasive material to comprise the abrasive section. The abrasive section may further comprise an abrasive crown or burr mounted to the drive shaft. The pre-curved drive shaft allows smaller diameter and/or massive abrasive regions to be used while sweeping larger diameters during high-speed rotation. The pre-curved region is substantially straightened for insertion into vasculature and placement adjacent stenosis by insertion of the guide wire. Removal of guide wire proximally from the pre-curved region allows the drive shaft to return to its pre-curved form for ablation. Reinsertion of the guide wire beyond the pre-curved region straightens the drive shaft for ease of removal.
    Type: Grant
    Filed: December 6, 2007
    Date of Patent: October 8, 2013
    Assignee: Cardiovascular Systems, Inc.
    Inventors: Scott M. Hanson, Walter Dobrovolny, Jeffrey R. Stone
  • Patent number: 8444686
    Abstract: A medical device has a catheter with a proximal portion, a distal portion, a shaft and an expandable member located at the distal portion. The expandable member is constructed and arranged for expanding the outer diameter of the catheter from a contracted state to an expanded state. A removable sleeve is positioned around the entire length of the expandable member. The sleeve has a first end and a second end, and an inner diameter that increases over the entire length of the sleeve.
    Type: Grant
    Filed: November 17, 2009
    Date of Patent: May 21, 2013
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Thomas J. Holman, Louis G. Ellis, Gregory K. Olson, Linda R. Lorentzen-Cornelius, Richard J. Traxler, Scott M. Hanson, Tracee E. J. Eidenschink, Sonja J. K. Williams
  • Patent number: 8382796
    Abstract: A device for sealing a patent foramen ovale (PFO) in the heart is provided. The device includes a left atrial anchor adapted to be placed in a left atrium of the heart, a right atrial anchor adapted to be placed in a right atrium of the heart, and an elongate member adapted to extend through the passageway and connect the left and right atrial anchors. The right atrial anchor preferably includes a plurality of arms and a cover attached to the arms. The left atrial anchor preferably also includes a plurality of arms and preferably does not include a cover. Preferably, the elongate member has a first end fixedly connected to the left atrial anchor and a portion, proximal to the first end, passing through the right atrial anchor. Preferably, the elongate member is flexible.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: February 26, 2013
    Assignee: St. Jude Medical, Cardiology Division, Inc.
    Inventors: David J. Blaeser, Jerome K. Grudem, Jr., Scott A. Olson, Mark R. Christianson, Scott M. Hanson, Edward J. Anderson, Patrick P. Russo, Dennis W. Wahr
  • Publication number: 20130023913
    Abstract: An atherectomy device is disclosed, which is rotationally driven by an electric motor. In some designs, the device includes features unavailable on gas turbine-driven systems, such as the storing in memory of low/medium/high preset rotation speeds for particular models of handle, calculations of the amount of saline left in the IV and associated warnings when it gets sufficiently low, and automatic adjustment of the IV pump rate to a predetermined or calculated level when the rotational speed of the motor is changed. The electric motor has far more rotational inertia than a comparable gas turbine, so the system includes a control mechanism that helps prevent damage from excessive torque being applied to the distal end of the drive shaft. When an obstruction at the distal end is detected, by a drop in the motor rotational speed, the motor is released and is allowed to spin freely as a flywheel.
    Type: Application
    Filed: September 21, 2012
    Publication date: January 24, 2013
    Applicant: CARDIOVASCULAR SYSTEMS, INC.
    Inventors: Jody Lee Rivers, Charles A. Plowe, Cassandra Ann Piippo Svendsen, Walter John Dobrovolny, Michael John Eng, Scott M. Hanson
  • Publication number: 20130018398
    Abstract: An atherectomy device is disclosed, which is rotationally driven by an electric motor. In some designs, the device includes features unavailable on gas turbine-driven systems, such as the storing in memory of low/medium/high preset rotation speeds for particular models of handle, calculations of the amount of saline left in the IV and associated warnings when it gets sufficiently low, and automatic adjustment of the IV pump rate to a predetermined or calculated level when the rotational speed of the motor is changed. The electric motor has far more rotational inertia than a comparable gas turbine, so the system includes a control mechanism that helps prevent damage from excessive torque being applied to the distal end of the drive shaft. When an obstruction at the distal end is detected, by a drop in the motor rotational speed, the motor is released and is allowed to spin freely as a flywheel.
    Type: Application
    Filed: September 21, 2012
    Publication date: January 17, 2013
    Applicant: CARDIOVASCULAR SYSTEMS, INC.
    Inventors: Jody Lee Rivers, Charles A. Plowe, Cassandra Ann Piippo Svendsen, Walter John Dobrovolny, Michael John Eng, Scott M. Hanson
  • Publication number: 20130018399
    Abstract: An atherectomy device is disclosed, which is rotationally driven by an electric motor. In some designs, the device includes features unavailable on gas turbine-driven systems, such as the storing in memory of low/medium/high preset rotation speeds for particular models of handle, calculations of the amount of saline left in the IV and associated warnings when it gets sufficiently low, and automatic adjustment of the IV pump rate to a predetermined or calculated level when the rotational speed of the motor is changed. The electric motor has far more rotational inertia than a comparable gas turbine, so the system includes a control mechanism that helps prevent damage from excessive torque being applied to the distal end of the drive shaft. When an obstruction at the distal end is detected, by a drop in the motor rotational speed, the motor is released and is allowed to spin freely as a flywheel.
    Type: Application
    Filed: September 21, 2012
    Publication date: January 17, 2013
    Applicant: CARDIOVASCULAR SYSTEMS, INC.
    Inventors: Jody Lee Rivers, Charles A. Plowe, Cassandra Ann Piippo Svendsen, Walter John Dobrovolny, Michael John Eng, Scott M. Hanson
  • Publication number: 20120030268
    Abstract: A data processing apparatus is provided for producing a randomized value. A cell in the data processing apparatus comprises a dielectric oxide layer and stress voltage circuitry is configured to apply a stress voltage across the dielectric oxide layer of the cell to cause an oxide breakdown process to occur. Oxide breakdown detection circuitry is configured to determine a current extent of the oxide breakdown process by measuring a response of the dielectric oxide layer to the stress voltage and randomized value determination circuitry is configured to determine a randomized value in dependence on the current extent of the oxide breakdown process.
    Type: Application
    Filed: June 2, 2011
    Publication date: February 2, 2012
    Applicant: University of Michigan
    Inventors: Nurrachman Chih Yeh Liu, Scott M. Hanson, Nathaniel Pinckney, David T. Blaauw, Dennis M. Sylvester
  • Publication number: 20110213391
    Abstract: An atherectomy device is disclosed, which is rotationally driven by an electric motor. In some designs, the device includes features unavailable on gas turbine-driven systems, such as the storing in memory of low/medium/high preset rotation speeds for particular models of handle, calculations of the amount of saline left in the IV and associated warnings when it gets sufficiently low, and automatic adjustment of the IV pump rate to a predetermined or calculated level when the rotational speed of the motor is changed. The electric motor has far more rotational inertia than a comparable gas turbine, so the system includes a control mechanism that helps prevent damage from excessive torque being applied to the distal end of the drive shaft. When an obstruction at the distal end is detected, by a drop in the motor rotational speed, the motor is released and is allowed to spin freely as a flywheel.
    Type: Application
    Filed: February 26, 2010
    Publication date: September 1, 2011
    Applicant: CARDIOVASCULAR SYSTEMS, INC.
    Inventors: Jody Lee Rivers, Charles A. Plowe, Cassandra Ann Piippo Svendsen, Walter John Dobrovolny, Michael John Eng, Scott M. Hanson
  • Publication number: 20100069839
    Abstract: A balloon catheter is provided having an expandable distal portion and balloon protector means comprising a first removable sleeve having a variable inner diameter to ease sliding the first sleeve over the balloon, and an optional second removable (outer) sleeve positioned over the inner sleeve, the second (outer) sleeve having a constrictive relationship with the first (inner) sleeve, said first and second sleeves being removed prior to use of the catheter.
    Type: Application
    Filed: November 17, 2009
    Publication date: March 18, 2010
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Thomas J. Holman, Louis G. Ellis, Gregory K. Olson, Linda R. Lorentzen-Cornelius, Richard J. Traxler, Scott M. Hanson, Tracee E.J. Eidenschink, Sonja J.K. Williams
  • Publication number: 20100069954
    Abstract: A device for sealing a patent foramen ovale (PFO) in the heart is provided. The device includes a left atrial anchor adapted to be placed in a left atrium of the heart, a right atrial anchor adapted to be placed in a right atrium of the heart, and an elongate member adapted to extend through the passageway and connect the left and right atrial anchors. The right atrial anchor preferably includes a plurality of arms and a cover attached to the arms. The left atrial anchor preferably also includes a plurality of arms and preferably does not include a cover. Preferably, the elongate member has a first end fixedly connected to the left atrial anchor and a portion, proximal to the first end, passing through the right atrial anchor. Preferably, the elongate member is flexible.
    Type: Application
    Filed: November 25, 2009
    Publication date: March 18, 2010
    Applicant: ST. JUDE MEDICAL CARDIOVASCULAR DIVISION
    Inventors: David J. Blaeser, Jerome K. Grudem, JR., Scott A. Olson, Mark R. Christianson, Scott M. Hanson, Edward J. Anderson, Patrick P. Russo, Dennis W. Wahr
  • Publication number: 20100036402
    Abstract: The invention provides a rotational atherectomy system, device and method comprising a flexible, elongated, rotatable drive shaft with an abrasive section within a pre-curved section of the drive shaft. The device may further comprise a concentric or eccentric enlarged diameter section that is at least partially covered with abrasive material to comprise the abrasive section. The abrasive section may further comprise an abrasive crown or burr mounted to the drive shaft. The pre-curved drive shaft allows smaller diameter and/or massive abrasive regions to be used while sweeping larger diameters during high-speed rotation. The pre-curved region is substantially straightened for insertion into vasculature and placement adjacent stenosis by insertion of the guide wire. Removal of guide wire proximally from the pre-curved region allows the drive shaft to return to its pre-curved form for ablation. Reinsertion of the guide wire beyond the pre-curved region straightens the drive shaft for ease of removal.
    Type: Application
    Filed: October 13, 2009
    Publication date: February 11, 2010
    Applicant: Cardiovascular Systems, Inc.
    Inventors: Scott M. Hanson, Walter Dobrovolny, Jeffrey R. Stone
  • Patent number: 7618398
    Abstract: A protective sleeve for a balloon dilatation catheter includes an elongate tubular member having a neck portion and a slit extending along the entire length of the tubular member from a proximal end to a distal end thereof, wherein a distal portion of the tubular member is flared from the neck portion to the distal end of the tubular member to define an enlarged funnel-like opening.
    Type: Grant
    Filed: December 14, 2000
    Date of Patent: November 17, 2009
    Assignee: Scimed life Systems, Inc.
    Inventors: Thomas J. Holman, Louis G. Ellis, Gregory K. Olson, Linda R. Lorentzen Cornelius, Richard J. Traxler, Scott M. Hanson
  • Publication number: 20090149877
    Abstract: The invention provides a rotational atherectomy system, device and method comprising a flexible, elongated, rotatable drive shaft with an abrasive section within a pre-curved section of the drive shaft. The device may further comprise a concentric or eccentric enlarged diameter section that is at least partially covered with abrasive material to comprise the abrasive section. The abrasive section may further comprise an abrasive crown or burr mounted to the drive shaft. The pre-curved drive shaft allows smaller diameter and/or massive abrasive regions to be used while sweeping larger diameters during high-speed rotation. The pre-curved region is substantially straightened for insertion into vasculature and placement adjacent stenosis by insertion of the guide wire. Removal of guide wire proximally from the pre-curved region allows the drive shaft to return to its pre-curved form for ablation. Reinsertion of the guide wire beyond the pre-curved region straightens the drive shaft for ease of removal.
    Type: Application
    Filed: December 6, 2007
    Publication date: June 11, 2009
    Applicant: Cardiovascular Systems, Inc.
    Inventors: Scott M. Hanson, Walter Dobrovolny, Jeffrey R. Stone