Patents by Inventor Scott M. Purdy

Scott M. Purdy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230091924
    Abstract: Techniques for utilizing a depth completion algorithm to determine dense depth data are discussed are discussed herein. Two-dimensional image data representing an environment can be captured or otherwise received. Depth data representing the environment can be captured or otherwise received. The depth data can be projected into the image data and processed using the depth completion algorithm. The depth completion algorithm can be utilized to determine the dense depth values based on intensity values of pixels, and other depth values. A vehicle can be controlled based on the determined depth values.
    Type: Application
    Filed: September 17, 2021
    Publication date: March 23, 2023
    Inventors: Jonathan Tyler Dowdall, Kratarth Goel, Adam Edward Pollack, Scott M. Purdy, Bharadwaj Raghavan
  • Publication number: 20230058731
    Abstract: Techniques for determining occupancy using unobstructed sensor emissions. For instance, a vehicle may receive sensor data from one or more sensors. The sensor data may represent at least locations to points within an environment. Using the sensor data, the vehicle may determine areas within the environment that are obstructed by objects (e.g., locations where objects are located). The vehicle may also use the sensor data to determine areas within the environment that are unobstructed by objects (e.g., locations where objects are not located). In some examples, the vehicle determines the unobstructed areas as including areas that are between the vehicle and the identified objects. This is because sensor emissions from the sensor(s) passed through these areas and then reflected off of objects located farther distances from the vehicle. The vehicle may then generate a map indicating at least the obstructed areas and the unobstructed areas within the environment.
    Type: Application
    Filed: August 18, 2021
    Publication date: February 23, 2023
    Inventor: Scott M. Purdy
  • Publication number: 20230059808
    Abstract: Techniques for determining occupancy using unobstructed sensor emissions. For instance, a vehicle may receive sensor data from one or more sensors. The sensor data may represent at least locations to points within an environment. Using the sensor data, the vehicle may determine areas within the environment that are obstructed by objects (e.g., locations where objects are located). The vehicle may also use the sensor data to determine areas within the environment that are unobstructed by objects (e.g., locations where objects are not located). In some examples, the vehicle determines the unobstructed areas as including areas that are between the vehicle and the identified objects. This is because sensor emissions from the sensor(s) passed through these areas and then reflected off of objects located farther distances from the vehicle. The vehicle may then generate a map indicating at least the obstructed areas and the unobstructed areas within the environment.
    Type: Application
    Filed: August 18, 2021
    Publication date: February 23, 2023
    Inventor: Scott M. Purdy
  • Publication number: 20160217164
    Abstract: Coordinate data is encoded as a distributed representation for processing and analysis by a machine-intelligence system such as a hierarchical temporal memory system. Input coordinates represented in coordinate space having at least one dimension are obtained. The input coordinates change over time. A corresponding region around each of the input coordinates in the coordinate space is determined. A subset of coordinates within the corresponding region for each of the input coordinates is selected. A distributed representation for each of the input coordinates reflecting the selected subset of coordinates for each of the input coordinates is generated. The distributed representation may be provided to one or more processing nodes for detection of temporal sequences and spatial patterns. Based on discrepancies between predicted coordinate data and actual coordinate data, anomalies may be detected.
    Type: Application
    Filed: January 28, 2015
    Publication date: July 28, 2016
    Inventors: Jeffrey C. Hawkins, Chetan Surpur, Scott M. Purdy