Patents by Inventor Scott Maxson

Scott Maxson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220331485
    Abstract: A cryopreserved cartilage product is disclosed. The cryopreserved cartilage product can include a partially digested cryopreserved natural cartilage collagen matrix isolated from a subject. The collagen matrix can include viable cells embedded within the collagen matrix that are native to the collagen matrix and that were embedded in the collagen matrix when the collagen matrix was isolated from the subject, at least 70% of the embedded cells native to the collagen matrix can be viable in the cryopreserved cartilage product, and the partially digested collagen matrix can retain interaction between the collagen matrix and the native cells.
    Type: Application
    Filed: June 30, 2022
    Publication date: October 20, 2022
    Inventors: Dana Sue Yoo, Jin-Qiang Kuang, Jaime Paden, Scott A. Maxson, Alla Danilkovitch, Erasmo Lopez, Samson Tom
  • Patent number: 11413373
    Abstract: This invention provides disrupted cartilage products, methods of manufacturing disrupted cartilage products, and methods of treating a subject comprising administering a cartilage product. The cartilage products are manufactured by a method comprising disrupting a collagen matrix, e.g. to produce a flexible cartilage product. Optionally, the cartilage products comprise viable chondrocytes, bioactive factors such as chondrogenic factors, and a collagen type II matrix. Optionally, the cartilage products are non-immunogenic.
    Type: Grant
    Filed: September 26, 2014
    Date of Patent: August 16, 2022
    Assignee: OSIRIS THERAPEUTICS, INC.
    Inventors: Dana Sue Yoo, Jin-Qiang Kuang, Jaime Paden, Scott A. Maxson, Alla Danilkovitch, Erasmo Lopez, Samson Tom
  • Patent number: 11406735
    Abstract: This invention provides porated cartilage products and methods of producing porated cartilage products. Optionally, the cartilage products are sized, porated, and digested to provide a flexible cartilage product. Optionally, the cartilage products comprise viable chondrocytes, bioactive factors such as chondrogenic factors, and a collagen type II matrix. Optionally, the cartilage products are non-immunogenic.
    Type: Grant
    Filed: September 12, 2014
    Date of Patent: August 9, 2022
    Assignee: OSIRIS THERAPEUTICS, INC.
    Inventors: Dana Sue Yoo, Jin-Qiang Kuang, Jaime Paden, Scott A. Maxson, Alla Danilkovitch, Erasmo Lopez, Samson Tom
  • Publication number: 20220184277
    Abstract: This invention provides porated cartilage products and methods of producing porated cartilage products. Optionally, the cartilage products are sized, porated, and digested to provide a flexible cartilage product. Optionally, the cartilage products comprise viable chondrocytes, bioactive factors such as chondrogenic factors, and a collagen type II matrix. Optionally, the cartilage products are non-immunogenic.
    Type: Application
    Filed: February 25, 2022
    Publication date: June 16, 2022
    Inventors: Dana Sue YOO, Jin-Qiang KUANG, Jaime PADEN, Scott A. MAXSON, Alla DANILKOVITCH, Erasmo LOPEZ, Samson TOM
  • Patent number: 10874763
    Abstract: This invention provides porated cartilage products, methods of producing porated cartilage products, and methods of treating subjects by administering cartilage products. Optionally, the cartilage products are sized, porated, and digested to provide a flexible cartilage product. Optionally, the cartilage products comprise viable chondrocytes, bioactive factors such as chondrogenic factors, and a collagen type II matrix. Optionally, the cartilage products are non-immunogenic.
    Type: Grant
    Filed: August 20, 2014
    Date of Patent: December 29, 2020
    Assignee: Osiris Therapeutics, Inc.
    Inventors: Dana Yoo, Jin-Qiang Kuang, Jaime Paden, Scott Maxson, Alla Danilkovitch, Erasmo Lopez, Samson Tom
  • Publication number: 20150140057
    Abstract: This invention provides porated cartilage products, methods of producing porated cartilage products, and methods of treating subjects by administering cartilage products. Optionally, the cartilage products are sized, porated, and digested to provide a flexible cartilage product. Optionally, the cartilage products comprise viable chondrocytes, bioactive factors such as chondrogenic factors, and a collagen type II matrix. Optionally, the cartilage products are non-immunogenic.
    Type: Application
    Filed: August 20, 2014
    Publication date: May 21, 2015
    Inventors: Dana Sue Yoo, Jin-Qiang Kuang, Jaime Paden, Scott A. Maxson, Alla Danilkovitch, Erasmo Lopez, Samson Tom
  • Publication number: 20150017222
    Abstract: This invention provides disrupted cartilage products, methods of manufacturing disrupted cartilage products, and methods of treating a subject comprising administering a cartilage product. The cartilage products are manufactured by a method comprising disrupting a collagen matrix, e.g. to produce a flexible cartilage product. Optionally, the cartilage products comprise viable chondrocytes, bioactive factors such as chondrogenic factors, and a collagen type II matrix. Optionally, the cartilage products are non-immunogenic.
    Type: Application
    Filed: September 26, 2014
    Publication date: January 15, 2015
    Inventors: Dana Sue Yoo, Jin-Qiang Kuang, Jaime Paden, Scott A. Maxson, Alla Danilkovitch, Erasmo Lopez, Samson Tom
  • Publication number: 20150004211
    Abstract: This invention provides porated cartilage products and methods of producing porated cartilage products. Optionally, the cartilage products are sized, porated, and digested to provide a flexible cartilage product. Optionally, the cartilage products comprise viable chondrocytes, bioactive factors such as chondrogenic factors, and a collagen type II matrix. Optionally, the cartilage products are non-immunogenic.
    Type: Application
    Filed: September 12, 2014
    Publication date: January 1, 2015
    Inventors: Dana Sue Yoo, Jin-Qiang Kuang, Jaime Paden, Scott A. Maxson, Alla Danilkovitch, Erasmo Lopez, Samson Tom
  • Publication number: 20140030309
    Abstract: This invention provides disrupted cartilage products, methods of manufacturing disrupted cartilage products, and methods of treating a subject comprising administering a cartilage product. The cartilage products are manufactured by a method comprising disrupting a collagen matrix, e.g. to produce a flexible cartilage product. Optionally, the cartilage products comprise viable chondrocytes, bioactive factors such as chondrogenic factors, and a collagen type II matrix. Optionally, the cartilage products are non-immunogenic.
    Type: Application
    Filed: July 11, 2013
    Publication date: January 30, 2014
    Applicant: Osiris Therapeutics, Inc.
    Inventors: Dana Sue Yoo, Jin-Qiang Kuang, Jaime Paden, Scott A. Maxson, Alla Danilkovitch, Erasmo Lopez, Samson Tom
  • Publication number: 20140017283
    Abstract: This invention provides porated cartilage products, methods of producing porated cartilage products, and methods of treating subjects by administering cartilage products. Optionally, the cartilage products are sized, porated, and digested to provide a flexible cartilage product. Optionally, the cartilage products comprise viable chondrocytes, bioactive factors such as chondrogenic factors, and a collagen type II matrix. Optionally, the cartilage products are non-immunogenic.
    Type: Application
    Filed: July 11, 2013
    Publication date: January 16, 2014
    Inventors: Dana Sue Yoo, Jin-Qiang Kuang, Jaime Paden, Scott A. Maxson, Alla Danilkovitch, Erasmo Lopez, Samson Tom
  • Publication number: 20140017292
    Abstract: This invention provides porated cartilage products and methods of producing porated cartilage products. Optionally, the cartilage products are sized, porated, and digested to provide a flexible cartilage product. Optionally, the cartilage products comprise viable chondrocytes, bioactive factors such as chondrogenic factors, and a collagen type II matrix. Optionally, the cartilage products are non-immunogenic.
    Type: Application
    Filed: July 11, 2013
    Publication date: January 16, 2014
    Inventors: Dana Sue Yoo, Jin-Qiang Kuang, Jaime Paden, Scott A. Maxson, Alla Danilkovitch, Erasmo Lopez, Samson Tom
  • Patent number: 8475531
    Abstract: Disclosed are osteochondral constructs that can be utilized to encourage both bone and articular cartilage tissue repair in synovial joints. Disclosed constructs are composites including a hydrogel portion for implant in a cartilage defect site and an adjacent portion for implant in a bone defect site. The portion to be implanted in a bone defect site can include a polymeric/ceramic composite material. Disclosed constructs also include a polymeric anchor that can secure the construct at the desired site. Disclosed constructs can also include capillary channeled fibers within the bone portion of the construct that can provide improved nutrient flow to and waste flow from cells growing and developing on and in the construct.
    Type: Grant
    Filed: April 20, 2010
    Date of Patent: July 2, 2013
    Inventors: Scott A. Maxson, Karen J. L. Burg
  • Patent number: 4808879
    Abstract: An acceleration and scan expansion lens system for use in an electron discharge tube provides scan expanion in which the amount of scan expansion provided in the horizontal direction is independent of the amount of scan expansion provided in the vertical direction. In a preferred embodiment, the lens system (10) is employed in a cathode-ray tube (12) which has greater deflection sensitivity in the vertical direction than in the horizontal direction. The lens system includes a mesh electrode structure (62) that has a dome-shaped mesh element (66) which is supported by an electrically connected to a metallic cylindrical support element (70). The dome-shaped mesh element is formed to have a concave surface as viewed in the propagation direction (35) of the electron beam and is of rotationally symmetric shape. The lens system also includes an annular electrode element (64) that has an aperture of elliptical shape and is positioned adjacent the output end of the mesh electrode structure.
    Type: Grant
    Filed: June 5, 1987
    Date of Patent: February 28, 1989
    Assignee: Tektronix, Inc.
    Inventors: Scott A. Maxson, John H. Sonneborn