Patents by Inventor Scott McCarthy
Scott McCarthy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12337529Abstract: A system for additive manufacturing machine energy beam alignment error compensation includes, a calibration table having x-y planar offsets to correct laser alignment errors representing energy beam positional offsets between beam-steering commanded energy beam locations and fiducial marks generated on a burn-paper, a recoater mechanism that distributes successive layers of powder, one or more sensors monitoring the powderbed surface proximal to the beam scan unit, and a processor unit configured to perform a method. The method including collecting sensor data representing height variations across at least a portion of the powderbed surface, deriving dimensional data from the collected data, analyzing the dimensional data to determine a distribution of differences between the powderbed surface and a calibration plane used for a first spatial calibration, and calculating z-axis calibration offset points for inclusion in the calibration table x-y planar offsets.Type: GrantFiled: May 15, 2023Date of Patent: June 24, 2025Assignee: General Electric CompanyInventors: Brian Scott McCarthy, Dean Andrew Snelling, Jr., Thomas Adcock, Donnell Crear, Michael Evans Graham
-
Publication number: 20240342801Abstract: An additive manufacturing system and a method for manufacturing a solid component with the additive manufacturing system is provided. The method includes determining a misalignment vector field having a plurality of misalignment vectors. The method further includes identifying one or more potential stitching positions where the solid component is generally tangent to one or more misalignment vectors. The method further includes generating a plurality of first hatching paths, a plurality of second hatching paths, and one or more stitching regions. The method further includes selectively directing the first laser beam across a powder bed along the plurality of first hatching paths to consolidate a first portion of the solid component. The method further includes selectively directing the second laser beam across the powder bed along the plurality of second hatching paths to consolidate a second portion of the solid component.Type: ApplicationFiled: April 17, 2023Publication date: October 17, 2024Inventors: Thomas Charles Adcock, Brian Scott McCarthy
-
Publication number: 20240326129Abstract: An additive manufacturing system includes a control system communicatively coupled to a consolidation device and configured to control operation of the consolidation device. The control system is configured to generate a model of a component including a plurality of elements and at least one region of interest. The control system is also configured to apply at least one strain load to at least one element of the plurality of elements and generate a build characteristic contribution profile based on the at least one strain load. The control system is further configured to determine a build parameter based at least partly on the build characteristic contribution profile.Type: ApplicationFiled: June 10, 2024Publication date: October 3, 2024Inventors: Brian Scott McCarthy, Aymeric Moinet, Rajesh Kartik Bollapragada, Tyler Nathaniel Nelson
-
Patent number: 12103107Abstract: A method of aligning at least one laser beam of an additive manufacturing arrangement. The method includes measuring a surface of the calibration plate at a plurality of measurement points using the coordinate measuring machine. The method further includes generating a correction field based on the plurality of measurement points using the coordinate measuring machine. The method further includes writing at least one fiducial mark on the surface of the calibration plate using the at least one laser beam. The method further includes generating calibration data for the surface of the calibration plate using the calibration system. The method also includes aligning the laser beam within the additive manufacturing system based on the calibration data and the correction field using the computing device by comparing a position of the fiducial mark from the calibration data with the correction field to determine a corrected position of the laser beam.Type: GrantFiled: July 18, 2019Date of Patent: October 1, 2024Assignee: General Electric CompanyInventors: Brian Scott McCarthy, Eric Edward Halla, Thomas Charles Adcock, Michael Evans Graham, Andrea Marie Schmitz, Mark Samuel Bailey
-
Patent number: 12017135Abstract: A wheel hub configured to be used with an electric vehicle. The wheel hub includes a hollow cylindrical body, a direct drive motor, a hollow axle, a battery, and a tire. The hollow cylindrical body includes a first end surface and a second end surface that is axially opposite and spaced apart from the first end surface. The direct drive motor is disposed within the hollow cylindrical body and is configured to rotate the cylindrical body about a central axis of the motor. The hollow axle has a central axis that is coaxial with the motor central axis and is at least partially disposed within the cylindrical body. The battery is disposed within the hollow cylindrical body and is in electrical communication with the direct drive motor. The tire is fixedly coupled and disposed on an external surface of the hollow cylindrical body.Type: GrantFiled: June 24, 2021Date of Patent: June 25, 2024Assignee: Milton, LLCInventors: Scott McCarthy, Logan McCarthy
-
Patent number: 12005498Abstract: An additive manufacturing system includes a control system communicatively coupled to a consolidation device and configured to control operation of the consolidation device. The control system is configured to generate a model of a component including a plurality of elements and at least one region of interest. The control system is also configured to apply at least one strain load to at least one element of the plurality of elements and generate a build characteristic contribution profile based on the at least one strain load. The control system is further configured to determine a build parameter based at least partly on the build characteristic contribution profile.Type: GrantFiled: July 31, 2020Date of Patent: June 11, 2024Assignee: General Electric CompanyInventors: Brian Scott McCarthy, Aymeric Moinet, Rajesh Kartik Bollapragada, Tyler Nathaniel Nelson
-
Publication number: 20240017481Abstract: Methods of additively manufacturing a three-dimensional object include irradiating a first build plane region using a first energy beam defining a beam diameter, the first energy beam travelling along a first oscillating path in a first direction to consolidate a first wall defining a thickness perpendicular to the first direction, wherein a build material adjacent a first side of the first wall and the build material adjacent a second side of the first wall, opposite the first side of the first wall, remains unconsolidated; and wherein the thickness of the first wall is greater than the beam diameter.Type: ApplicationFiled: July 15, 2022Publication date: January 18, 2024Inventors: Victor Petrovich Ostroverkhov, Christopher Darby Immer, Thomas Charles Adcock, Justin John Gambone, Daniel Jason Erno, Brian Scott McCarthy, John Joseph Madelone, JR.
-
Publication number: 20230278282Abstract: A system for additive manufacturing machine energy beam alignment error compensation includes, a calibration table having x-y planar offsets to correct laser alignment errors representing energy beam positional offsets between beam-steering commanded energy beam locations and fiducial marks generated on a burn-paper, a recoater mechanism that distributes successive layers of powder, one or more sensors monitoring the powderbed surface proximal to the beam scan unit, and a processor unit configured to perform a method. The method including collecting sensor data representing height variations across at least a portion of the powderbed surface, deriving dimensional data from the collected data, analyzing the dimensional data to determine a distribution of differences between the powderbed surface and a calibration plane used for a first spatial calibration, and calculating z-axis calibration offset points for inclusion in the calibration table x-y planar offsets.Type: ApplicationFiled: May 15, 2023Publication date: September 7, 2023Inventors: Brian Scott McCarthy, Dean Andrew Snelling, JR., Thomas Adcock, Donnell Crear, Michael Evans Graham
-
Patent number: 11679551Abstract: A system for additive manufacturing machine energy beam alignment error compensation includes, a calibration table having x-y planar offsets to correct laser alignment errors representing energy beam positional offsets between beam-steering commanded energy beam locations and fiducial marks generated on a burn-paper, a recoater mechanism that distributes successive layers of powder, one or more sensors monitoring the powderbed surface proximal to the beam scan unit, and a processor unit configured to perform a method. The method including collecting sensor data representing height variations across at least a portion of the powderbed surface, deriving dimensional data from the collected data, analyzing the dimensional data to determine a distribution of differences between the powderbed surface and a reference plane containing the burn-paper when the fiducial marks were generated, and calculating z-axis calibration offset points for inclusion in the calibration table x-y planar offsets.Type: GrantFiled: February 28, 2019Date of Patent: June 20, 2023Assignee: General Electric CompanyInventors: Brian Scott McCarthy, Dean Andrew Snelling, Jr., Thomas Adcock, Donnell Crear, Michael Evans Graham
-
Patent number: 11555794Abstract: A method of identifying at least one pole location on a bearing element formed from a metal source element. The method is non-destructive and does not alter the surface of the bearing element. The method includes applying X-rays to a plurality of regions of a bearing element, and measuring diffracted intensity values of X-ray diffraction vectors or bi-sectors at the plurality of regions. The method includes determining at least one pole location on the bearing element based on the diffracted intensity values.Type: GrantFiled: December 1, 2021Date of Patent: January 17, 2023Assignee: Schaeffler Technologies AG & Co. KGInventor: Scott McCarthy
-
Publication number: 20220409984Abstract: Various implementations include a wheel hub configured to be used with an electric vehicle. The wheel hub includes a hollow cylindrical body, a direct drive motor, a hollow axle, a battery, and a tire. The hollow cylindrical body includes a first end surface and a second end surface that is axially opposite and spaced apart from the first end surface. The direct drive motor is disposed within the hollow cylindrical body and is configured to rotate the cylindrical body about a central axis of the motor. The hollow axle has a central axis that is coaxial with the motor central axis and is at least partially disposed within the cylindrical body. The battery is disposed within the hollow cylindrical body and is in electrical communication with the direct drive motor. The tire is fixedly coupled and disposed on an external surface of the hollow cylindrical body.Type: ApplicationFiled: June 24, 2021Publication date: December 29, 2022Inventors: Scott McCarthy, Logan McCarthy
-
Patent number: 11407170Abstract: An additive manufacturing system includes a first laser device configured to generate a first laser beam and a second laser device configured to generate a second laser beam. The laser scanning devices include a first laser scanning device and a second laser scanning device. The first laser scanning device is configured to selectively direct the first laser beam from the first laser devices across a powder bed along a plurality of first hatching paths and a first contour path along a contour of the solid component. The second laser scanning device is configured to selectively direct the second laser beam from the second laser devices across the powder bed along a plurality of second hatching paths and a second contour path along the contour of the solid component. The first contour path includes a first hook extending into the plurality of second hatching paths.Type: GrantFiled: December 20, 2019Date of Patent: August 9, 2022Assignee: GENERAL ELECTRIC COMPANYInventors: Brian Scott McCarthy, John Joseph Madelone, Jr., Justin John Gambone, Jr., Rachel Wyn Levine
-
Patent number: 11325020Abstract: Various implementations include a skateboard truck including a baseplate, a hanger, and a kingpin. The baseplate defines has a mounting surface. The hanger includes a main portion, a pivot pin, a first branch, and a second branch. The pivot pin is disposed within a pivot cup of the baseplate. The kingpin is disposed within openings in the baseplate and hanger. The branches each have curved longitudinal axes, a first portion coupled to the main portion, and a middle portion coupling the first and second portions. The second portion of each of the branches defines an axle opening. The first portion extends from the main portion toward the middle portion in a direction away from a mounting surface plane. The second portion extends from the middle portion in a direction toward the mounting surface plane. The first portions are closer to each other than the second portions are to each other.Type: GrantFiled: December 10, 2020Date of Patent: May 10, 2022Assignee: Milton, LLCInventors: Scott McCarthy, Logan McCarthy
-
Publication number: 20220032549Abstract: An additive manufacturing system includes a control system communicatively coupled to a consolidation device and configured to control operation of the consolidation device. The control system is configured to generate a model of a component. The model includes a plurality of elements and at least one region of interest. The control system is also configured to apply a strain load to at least one element of the plurality of elements and generate a build characteristic contribution profile for at least one element of the plurality of elements. The build characteristic contribution profile represents an effect of the strain load applied to the at least one element on a build characteristic of at least one location within the at least one region of interest. The control system is further configured to adjust a build parameter for a location within the component relating to the at least one element of the plurality of elements based on the build characteristic contribution profile.Type: ApplicationFiled: July 30, 2020Publication date: February 3, 2022Inventors: Brian Scott McCarthy, Aymeric Moinet, Evan John Dozier, Sathyanarayanan Raghavan, Michael Evans Graham, Tyler Nathaniel Nelson, Rajesh Kartik Bollapragada
-
Publication number: 20220032367Abstract: An additive manufacturing system includes a control system communicatively coupled to a consolidation device and configured to control operation of the consolidation device. The control system is configured to generate a model of a component including a plurality of elements and at least one region of interest. The control system is also configured to apply at least one strain load to at least one element of the plurality of elements and generate a build characteristic contribution profile based on the at least one strain load. The control system is further configured to determine a build parameter based at least partly on the build characteristic contribution profile.Type: ApplicationFiled: July 31, 2020Publication date: February 3, 2022Inventors: Brian Scott McCarthy, Aymeric Moinet, Rajesh Kartik Bollapragada, Tyler Nathaniel Nelson
-
Patent number: 11141818Abstract: A direct metal laser melting (DMLM) system includes a rotatable base, and a build plate mounted on and supported by the rotatable base, where the build plate includes a build surface. The DMLM system also includes a first actuator assembly, a first powder dispenser disposed proximate the build plate and configured to deposit a weldable powder on the build surface of the build plate. In addition, the DMLM system includes a first powder spreader disposed proximate the build plate and configured to spread the weldable powder deposited on the build surface of the build plate, and a first laser scanner supported by the first actuator assembly in a position relative to the build plate, such that at least a portion of the build surface is within a field of view of the first laser scanner. The first laser scanner is configured to selectively weld the weldable powder. The first laser scanner is further configured to translate axially relative to the build surface on the first actuator assembly.Type: GrantFiled: February 5, 2018Date of Patent: October 12, 2021Assignee: General Electric CompanyInventors: William Thomas Carter, Todd Jay Rockstroh, Brian Scott McCarthy, Subhrajit Roychowdhury, Younkoo Jeong, David Charles Bogdan, Jr.
-
Publication number: 20210187830Abstract: An additive manufacturing system includes a first laser device configured to generate a first laser beam and a second laser device configured to generate a second laser beam. The laser scanning devices include a first laser scanning device and a second laser scanning device. The first laser scanning device is configured to selectively direct the first laser beam from the first laser devices across a powder bed along a plurality of first hatching paths and a first contour path along a contour of the solid component. The second laser scanning device is configured to selectively direct the second laser beam from the second laser devices across the powder bed along a plurality of second hatching paths and a second contour path along the contour of the solid component. The first contour path includes a first hook extending into the plurality of second hatching paths.Type: ApplicationFiled: December 20, 2019Publication date: June 24, 2021Inventors: Brian Scott McCarthy, John Joseph Madelone, JR., Justin John Gambone, JR., Rachel Wyn Levine
-
Publication number: 20210016394Abstract: A method of aligning at least one laser beam of an additive manufacturing arrangement. The method includes measuring a surface of the calibration plate at a plurality of measurement points using the coordinate measuring machine. The method further includes generating a correction field based on the plurality of measurement points using the coordinate measuring machine. The method further includes writing at least one fiducial mark on the surface of the calibration plate using the at least one laser beam. The method further includes generating calibration data for the surface of the calibration plate using the calibration system. The method also includes aligning the laser beam within the additive manufacturing system based on the calibration data and the correction field using the computing device by comparing a position of the fiducial mark from the calibration data with the correction field to determine a corrected position of the laser beam.Type: ApplicationFiled: July 18, 2019Publication date: January 21, 2021Inventors: Brian Scott McCarthy, Eric Edward Halla, Thomas Charles Adcock, Michael Evans Graham, Andrea Marie Schmitz, Mark Samuel Bailey
-
Publication number: 20200172434Abstract: Methods and apparatuses for delivering and retaining solid chemicals in molten salt baths are provided, the chemicals may serve to reduce the lithium poisoning level of the molten salt bath. Methods and apparatuses are also provided for retaining sludge in a molten salt bath, allowing for removal of the sludge from the molten salt bath.Type: ApplicationFiled: November 22, 2019Publication date: June 4, 2020Inventors: John Martin Dafin, Jeffrey Alan Decker, William Jason Hill, Yuhui Jin, James Paul McCann, Alan Scott McCarthy
-
Publication number: 20190240781Abstract: A direct metal laser melting (DMLM) system includes a rotatable base, and a build plate mounted on and supported by the rotatable base, where the build plate includes a build surface. The DMLM system also includes a first actuator assembly, a first powder dispenser disposed proximate the build plate and configured to deposit a weldable powder on the build surface of the build plate. In addition, the DMLM system includes a first powder spreader disposed proximate the build plate and configured to spread the weldable powder deposited on the build surface of the build plate, and a first laser scanner supported by the first actuator assembly in a position relative to the build plate, such that at least a portion of the build surface is within a field of view of the first laser scanner. The first laser scanner is configured to selectively weld the weldable powder. The first laser scanner is further configured to translate axially relative to the build surface on the first actuator assembly.Type: ApplicationFiled: February 5, 2018Publication date: August 8, 2019Inventors: William Thomas Carter, Todd Jay Rockstroh, Brian Scott McCarthy, Subhrajit Roychowdhury, Younkoo Jeong, David Charles Bogdan, JR.