Patents by Inventor Scott McEldowney

Scott McEldowney has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11199721
    Abstract: A lens includes a substrate with optically anisotropic molecules arranged in helical configurations between first and second surfaces. A first portion of the substrate includes a first helical structure having a first phase and a second helical structure adjacent to the first helical structure having a second phase. A difference between the first and second phases corresponds to a first phase difference. A second portion includes a third helical structure having a third phase and a fourth helical structure adjacent to the third helical structure having a fourth phase. A difference between the third and fourth phases corresponds to a second phase difference. A third portion includes a fifth helical structure having a fifth phase and a sixth helical structure adjacent to the fifth helical structure having a sixth phase. A difference between the fifth and sixth phases corresponds to a third phase difference.
    Type: Grant
    Filed: December 18, 2018
    Date of Patent: December 14, 2021
    Assignee: Facebook Technologies, LLC
    Inventors: Scott McEldowney, Lu Lu, Babak Amirsolaimani
  • Patent number: 10935790
    Abstract: A device and a head-mounted display (HMD) are provided. The device comprises a first flexible electrode and a second flexible electrode configured to provide a driving voltage to the device; a birefringent material layer coupled to the first flexible electrode and the second flexible electrode, and structurally patterned to provide at least one predetermined optical function of the device; and a first photo-alignment (PAM) layer and a second PAM layer sandwiching the birefringent material layer. A structured pattern of the birefringent material layer is based on a manipulation of optic axis of birefringent material molecules in the birefringent material layer.
    Type: Grant
    Filed: February 7, 2019
    Date of Patent: March 2, 2021
    Assignee: Facebook Technologies, LLC
    Inventors: Lu Lu, Junren Wang, Scott McEldowney
  • Patent number: 10884309
    Abstract: A transferrable thin-film optical device and a head-mounted display are provided. A transferrable thin-film optical device comprises a thin-film layer providing at least one predetermined optical function. The thin-film layer is configured to be removably attached to a substrate, such that a molecular pattern for the at least one predetermined optical function of the thin-film layer is preserved post removal.
    Type: Grant
    Filed: February 12, 2019
    Date of Patent: January 5, 2021
    Assignee: FACEBOOK TECHNOLOGIES, LLC
    Inventors: Lu Lu, Junren Wang, Scott McEldowney
  • Patent number: 10852558
    Abstract: A device and method are provided. The device comprises a reflector having variable optical power; and a waveguide display assembly optically coupled to the reflector and having a light source. The waveguide display assembly is configured to guide light from the light source to transmit in a first direction towards the reflector for a first optical path, and in a second direction towards an eye-box of the device for a second optical path. The reflector is configured to reflect the light in the first direction towards the eye-box.
    Type: Grant
    Filed: August 24, 2018
    Date of Patent: December 1, 2020
    Assignee: FACEBOOK TECHNOLOGIES, LLC
    Inventors: Wai Sze Tiffany Lam, Ying Geng, Scott McEldowney
  • Patent number: 10746994
    Abstract: The technology provides decoupling an aspheric optical element from a birdbath optical element in a near-eye display (NED) device. One or more aspheric lens are used with a spherical birdbath reflective mirror in a projection light engine of a NED device. A projection light engine provides image light (or other information), by way of the spherical birdbath reflective mirror and at least one aspheric lens, to a near-eye display of the NED device. The spherical birdbath reflective mirror collimates and reflects the image light to an exit pupil external to the projection light engine. Decoupling the aspheric optical element from the spherical birdbath reflective mirror may enable high modulation transfer function (MTF) and improved manufacturability of the projection light engine. The NED device having aspheric optical elements decoupled from a birdbath optical element may be positioned by a support structure in a head-mounted display (HMD) or head-up display (HUD).
    Type: Grant
    Filed: August 7, 2014
    Date of Patent: August 18, 2020
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Yarn Chee Poon, Joshua A Hudman, R Andrew Wall, Scott McEldowney, Steven John Robbins
  • Publication number: 20200257119
    Abstract: A device and a head-mounted display (HMD) are provided. The device comprises a first flexible electrode and a second flexible electrode configured to provide a driving voltage to the device; a birefringent material layer coupled to the first flexible electrode and the second flexible electrode, and structurally patterned to provide at least one predetermined optical function of the device; and a first photo-alignment (PAM) layer and a second PAM layer sandwiching the birefringent material layer. A structured pattern of the birefringent material layer is based on a manipulation of optic axis of birefringent material molecules in the birefringent material layer.
    Type: Application
    Filed: February 7, 2019
    Publication date: August 13, 2020
    Inventors: Lu LU, Junren WANG, Scott MCELDOWNEY
  • Publication number: 20200064641
    Abstract: A device and method are provided. The device comprises a reflector having variable optical power; and a waveguide display assembly optically coupled to the reflector and having a light source. The waveguide display assembly is configured to guide light from the light source to transmit in a first direction towards the reflector for a first optical path, and in a second direction towards an eye-box of the device for a second optical path. The reflector is configured to reflect the light in the first direction towards the eye-box.
    Type: Application
    Filed: August 24, 2018
    Publication date: February 27, 2020
    Inventors: Wai Sze Tiffany LAM, Ying GENG, Scott MCELDOWNEY
  • Publication number: 20200050031
    Abstract: A transferrable thin-film optical device and a head-mounted display are provided. A transferrable thin-film optical device comprises a thin-film layer providing at least one predetermined optical function. The thin-film layer is configured to be removably attached to a substrate, such that a molecular pattern for the at least one predetermined optical function of the thin-film layer is preserved post removal.
    Type: Application
    Filed: February 12, 2019
    Publication date: February 13, 2020
    Inventors: Lu LU, Junren WANG, Scott MCELDOWNEY
  • Patent number: 10228561
    Abstract: An example see-through head-mounted display system includes a freeform prism and a display device configured to emit display light through the freeform prism to an eye of a user. The see-through head-mounted display system may also include an imaging device configured to receive gaze-detection light reflected from the eye and directed through the freeform prism.
    Type: Grant
    Filed: June 25, 2013
    Date of Patent: March 12, 2019
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: Steve Robbins, Scott McEldowney, Xinye Lou, David Nister, Drew Steedly, Quentin Simon Charles Miller, David D Bohn, James Peele Terrell, Jr., Andrew C. Goris, Nathan Ackerman
  • Patent number: 9759913
    Abstract: A transparent waveguide for use in eye tracking includes an input-coupler and an output-coupler. The input-coupler comprises a plurality of curved grating lines having a radially varying pitch. When positioned in front of an eye illuminated with infrared light, infrared light beams reflected from the eye and incident on the input-coupler enter the waveguide at the input-coupler, propagate through the waveguide by way of total internal reflections, and exit the waveguide proximate the output-coupler.
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: September 12, 2017
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: Pasi Saarikko, Xinye Lou, Scott McEldowney, Steven Robbins
  • Patent number: 9625723
    Abstract: An example see-through head-mounted display system includes a freeform prism and a display device configured to emit display light through the freeform prism to an eye of a user. The see-through head-mounted display system may also include an imaging device having an entrance pupil positioned at a back focal plane of the freeform prism, the imaging device configured to receive gaze-detection light reflected from the eye and directed through the freeform prism.
    Type: Grant
    Filed: June 25, 2013
    Date of Patent: April 18, 2017
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: Xinye Lou, Scott McEldowney, Steve Robbins
  • Patent number: 9557574
    Abstract: A depth image capture device uses a circular polarization structure positioned at the output of an illumination radiation source, such as a diode laser. A linear polarization element receives the collimated illumination radiation and provides polarized radiation to a quarter wave plate. Radiation exits the quarter wave plate as circularly polarized radiation and is provided to a diffractive optical element outputting a pattern to illuminate a target. A detector receives a reflection of the output pattern from the target.
    Type: Grant
    Filed: June 8, 2010
    Date of Patent: January 31, 2017
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventor: Scott McEldowney
  • Publication number: 20160370583
    Abstract: A transparent waveguide for use in eye tracking includes an input-coupler and an output-coupler. The input-coupler comprises a plurality of curved grating lines having a radially varying pitch. When positioned in front of an eye illuminated with infrared light, infrared light beams reflected from the eye and incident on the input-coupler enter the waveguide at the input-coupler, propagate through the waveguide by way of total internal reflections, and exit the waveguide proximate the output-coupler.
    Type: Application
    Filed: September 2, 2016
    Publication date: December 22, 2016
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Pasi Saarikko, Xinye Lou, Scott McEldowney, Steven Robbins
  • Patent number: 9459451
    Abstract: A transparent waveguide for use in eye tracking includes an input-coupler and an output-coupler. The input-coupler comprises a plurality of curved grating lines having a radially varying pitch. When positioned in front of an eye illuminated with infrared light, infrared light beams reflected from the eye and incident on the input-coupler enter the waveguide at the input-coupler, propagate through the waveguide by way of total internal reflections, and exit the waveguide proximate the output-coupler.
    Type: Grant
    Filed: December 26, 2013
    Date of Patent: October 4, 2016
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: Pasi Saarikko, Xinye Lou, Scott McEldowney, Steven Robbins, Tapani Levola
  • Patent number: 9291449
    Abstract: Technology for detecting a change in a configuration position of one or more elements in an illumination system is described. A light source generates an illumination signal, and an element of the system directs a portion of the light of the signal back to a light detector. In one example, the portion of light is reflected back to the light detector. By monitoring an output signal of the light detector based on the directed light, control circuitry can detect that a position of an element of the system has changed. In one example, an off-the-shelf integrated circuit laser diode package including a monitor photodiode can be used with a reflective element. In one example, the reflective element is a tilted optical element. Changes can be detected in the configuration of one or more optical elements of the illumination system which are outside the laser diode package.
    Type: Grant
    Filed: November 25, 2013
    Date of Patent: March 22, 2016
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Scott McEldowney, Dawson Yee
  • Publication number: 20160041390
    Abstract: The technology provides decoupling an aspheric optical element from a birdbath optical element in a near-eye display (NED) device. One or more aspheric lens are used with a spherical birdbath reflective mirror in a projection light engine of a NED device. A projection light engine provides image light (or other information), by way of the spherical birdbath reflective mirror and at least one aspheric lens, to a near-eye display of the NED device. The spherical birdbath reflective mirror collimates and reflects the image light to an exit pupil external to the projection light engine. Decoupling the aspheric optical element from the spherical birdbath reflective mirror may enable high modulation transfer function (MTF) and improved manufacturability of the projection light engine. The NED device having aspheric optical elements decoupled from a birdbath optical element may be positioned by a support structure in a head-mounted display (HMD) or head-up display (HUD).
    Type: Application
    Filed: August 7, 2014
    Publication date: February 11, 2016
    Inventors: Yarn Chee Poon, Joshua A Hudman, R Andrew Wall, Scott McEldowney, Steven John Robbins
  • Publication number: 20150185475
    Abstract: A transparent waveguide for use in eye tracking includes an input-coupler and an output-coupler. The input-coupler comprises a plurality of curved grating lines having a radially varying pitch. When positioned in front of an eye illuminated with infrared light, infrared light beams reflected from the eye and incident on the input-coupler enter the waveguide at the input-coupler, propagate through the waveguide by way of total internal reflections, and exit the waveguide proximate the output-coupler.
    Type: Application
    Filed: December 26, 2013
    Publication date: July 2, 2015
    Inventors: Pasi Saarikko, Xinye Lou, Scott McEldowney, Steven Robbins, Tapani Levola
  • Publication number: 20140375789
    Abstract: Embodiments are disclosed for a see-through head-mounted display system. In one embodiment, the see-through head-mounted display system comprises a freeform prism, and a display device configured to emit display light through the freeform prism to an eye of a user. The see-through head-mounted display system may also comprise an imaging device having an entrance pupil positioned at a back focal plane of the freeform prism, the imaging device configured to receive gaze-detection light reflected from the eye and directed through the freeform prism.
    Type: Application
    Filed: June 25, 2013
    Publication date: December 25, 2014
    Inventors: Xinye Lou, Scott McEldowney, Steve Robbins
  • Publication number: 20140375790
    Abstract: Embodiments are disclosed for a see-through head-mounted display system. In one embodiment, the see-through head-mounted display system comprises a freeform prism, and a display device configured to emit display light through the freeform prism to an eye of a user. The see-through head-mounted display system may also comprise an imaging device having an entrance pupil positioned at a back focal plane of the freeform prism, the imaging device configured to receive gaze-detection light reflected from the eye and directed through the freeform prism.
    Type: Application
    Filed: June 25, 2013
    Publication date: December 25, 2014
    Inventors: Steve Robbins, Scott McEldowney, Xinye Lou, David Nister, Drew Steedly, Quentin Simon Charles Miller, David D. Bohn, James Peele Terrell, JR., Andrew C. Goris, Nathan Ackerman
  • Publication number: 20140291520
    Abstract: A dual-mode includes a light source configured to project a structured illumination from which visible light can be filtered. The dual-mode imager also includes a detector configured to capture both the structured illumination and visible light from the scene. A temporal or spatial filter is used to selectively block visible light from one or more portions of the detector while passing the structured illumination to the one or more portions of the detector.
    Type: Application
    Filed: April 1, 2014
    Publication date: October 2, 2014
    Applicant: Microsoft Corporation
    Inventors: Scott McEldowney, Edward Giaimo