Patents by Inventor Scott McGonigle

Scott McGonigle has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230099028
    Abstract: An example device for determining heart rate variability (HRV) includes a memory configured to store a sensed pulse rate signal indicative of one or more sensed pulse rates and processor circuitry. The processor circuitry is configured to receive the sensed pulse rate signal and determine that a pulse rate of the sensed pulse rate signal, within a predetermined time period, is erroneous. The processor circuitry is configured to process the erroneous pulse rate to create a modified sensed pulse rate signal. The processor circuitry is configured to determine an HRV value based on the modified pulse rate signal over the predetermined time period and output information indicative of the determined HRV value.
    Type: Application
    Filed: August 25, 2022
    Publication date: March 30, 2023
    Inventors: Pedro M. Elias Monteiro Gomes, Scott McGonigle, Dean Montgomery
  • Publication number: 20230094301
    Abstract: An example device for determining one or more transient decelerations includes a memory configured to store a sensed pulse rate signal indicative of one or more sensed pulse rates and processing circuitry. The processing circuitry is configured to determine that an amplitude threshold is crossed by a sensed pulse rate signal indicative of one or more sensed pulse rates. The processing circuitry also is configured to, from a time the amplitude threshold is crossed, determine that a pulse rate returns to within a range of a baseline pulse rate within a number of samples or a time period. The processing circuitry is also configured to, based on the pulse rate returning to within the range of the baseline pulse rate, from the time the amplitude threshold is crossed, within the number of samples or the time period, determine a transient deceleration.
    Type: Application
    Filed: August 25, 2022
    Publication date: March 30, 2023
    Inventors: Pedro M. Elias Monteiro Gomes, Scott McGonigle, Dean Montgomery, Paul S. Addison
  • Patent number: 11317821
    Abstract: The present invention relates to physiological signal processing, and in particular to methods and systems for processing physiological signals to predict a fluid responsiveness of a patient. A medical monitor for monitoring a patient includes an input receiving a photoplethysmograph (PPG) signal representing light absorption by a patient's tissue. The monitor also includes a perfusion status indicator indicating a perfusion status of the PPG signal, and a fluid responsiveness predictor (FRP) calculator programmed to calculate an FRP value based on a respiratory variation of the PPG signal. The FRP calculator applies a correction factor based on the perfusion status indicator.
    Type: Grant
    Filed: September 12, 2017
    Date of Patent: May 3, 2022
    Assignee: COVIDIEN LP
    Inventors: Paul Stanley Addison, Rui Wang, Scott McGonigle, James N. Watson
  • Patent number: 10537289
    Abstract: Systems and methods are provided for determining respiration information from physiological signals such as PPG signals. A physiological signal is processed to generate at least one respiration information signal and an autocorrelation sequence is generated based on the at least one respiration information signal. In some embodiments, a respiration peak is identified based on the autocorrelation sequence and a composite peak is generated based on the identified peak and at least one previous respiration peak. Respiration information is calculated based on the composite peak. In some embodiments, a determination is made whether the autocorrelation sequence includes an undesired harmonic. When the autocorrelation sequence includes an undesired harmonic, the autocorrelation sequence may not be used in the calculation of respiration information.
    Type: Grant
    Filed: February 23, 2018
    Date of Patent: January 21, 2020
    Assignee: COVIDIEN LP
    Inventors: James Ochs, Scott McGonigle, Paul Addison
  • Patent number: 10499835
    Abstract: Methods and systems are provided for determining fluid responsiveness in the presence of noise. The system may determine an instantaneous value indicative of fluid responsiveness. In some embodiments, the system may determine a difference between an instantaneous value indicative of fluid responsiveness and a previous value indicative of fluid responsiveness, and select an update characteristic based on whether the difference indicates that the fluid responsiveness is increasing or decreasing. In some embodiments, the system may determine a parameter indicative of fluid responsiveness based on the update characteristic and a previously reported value indicative of fluid responsiveness.
    Type: Grant
    Filed: March 8, 2016
    Date of Patent: December 10, 2019
    Assignee: Covidien LP
    Inventors: Paul S. Addison, Scott McGonigle, James N. Watson
  • Patent number: 10022068
    Abstract: Systems and methods are provided for detecting held breath events. A physiological signal, such as a photoplethysmograph (PPG) signal, is processed to extract respiration-related morphology metric signals. The morphology signals are analyzed to determine when a patient's breath is being held.
    Type: Grant
    Filed: October 27, 2014
    Date of Patent: July 17, 2018
    Assignee: Covidien LP
    Inventors: Scott McGonigle, James Ochs
  • Publication number: 20180177460
    Abstract: Systems and methods are provided for determining respiration information from physiological signals such as PPG signals. A physiological signal is processed to generate at least one respiration information signal and an autocorrelation sequence is generated based on the at least one respiration information signal. In some embodiments, a respiration peak is identified based on the autocorrelation sequence and a composite peak is generated based on the identified peak and at least one previous respiration peak. Respiration information is calculated based on the composite peak. In some embodiments, a determination is made whether the autocorrelation sequence includes an undesired harmonic. When the autocorrelation sequence includes an undesired harmonic, the autocorrelation sequence may not be used in the calculation of respiration information.
    Type: Application
    Filed: February 23, 2018
    Publication date: June 28, 2018
    Inventors: James Ochs, Scott McGonigle, Paul Addison
  • Patent number: 9901308
    Abstract: Systems and methods are provided for determining respiration information from physiological signals such as PPG signals. A physiological signal is processed to generate at least one respiration information signal and an autocorrelation sequence is generated based on the at least one respiration information signal. In some embodiments, a respiration peak is identified based on the autocorrelation sequence and a composite peak is generated based on the identified peak and at least one previous respiration peak. Respiration information is calculated based on the composite peak. In some embodiments, a determination is made whether the autocorrelation sequence includes an undesired harmonic. When the autocorrelation sequence includes an undesired harmonic, the autocorrelation sequence may not be used in the calculation of respiration information.
    Type: Grant
    Filed: February 20, 2015
    Date of Patent: February 27, 2018
    Assignee: Covidien LP
    Inventors: James Ochs, Scott McGonigle, Paul Addison
  • Publication number: 20180000360
    Abstract: The present invention relates to physiological signal processing, and in particular to methods and systems for processing physiological signals to predict a fluid responsiveness of a patient. A medical monitor for monitoring a patient includes an input receiving a photoplethysmograph (PPG) signal representing light absorption by a patient's tissue. The monitor also includes a perfusion status indicator indicating a perfusion status of the PPG signal, and a fluid responsiveness predictor (FRP) calculator programmed to calculate an FRP value based on a respiratory variation of the PPG signal. The FRP calculator applies a correction factor based on the perfusion status indicator.
    Type: Application
    Filed: September 12, 2017
    Publication date: January 4, 2018
    Inventors: Paul Stanley Addison, Rui Wang, Scott McGonigle, James N. Watson
  • Patent number: 9763585
    Abstract: The present invention relates to physiological signal processing, and in particular to methods and systems for processing physiological signals to predict a fluid responsiveness of a patient. A medical monitor for monitoring a patient includes an input receiving a photoplethysmograph (PPG) signal representing light absorption by a patient's tissue. The monitor also includes a perfusion status indicator indicating a perfusion status of the PPG signal, and a fluid responsiveness predictor (FRP) calculator programmed to calculate an FRP value based on a respiratory variation of the PPG signal. The FRP calculator applies a correction factor based on the perfusion status indicator.
    Type: Grant
    Filed: April 22, 2014
    Date of Patent: September 19, 2017
    Assignee: Covidien LP
    Inventors: Paul Stanley Addison, Rui Wang, Scott McGonigle, James N. Watson
  • Patent number: 9693709
    Abstract: A patient monitoring system may determine one or more reference points of a physiological signal. The system may select one or more fiducial points on the physiological signal relative to the reference points. The one or more fiducial points may be selected by selecting a point spaced by a time interval relative to one of the reference points. The time interval may be a predetermined constant, or the time interval may depend on physiological information. The system may generate a fiducial signal based on the selected fiducial points, calculate physiological information such as a respiration rate based on the selected fiducial points, or both.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: July 4, 2017
    Assignee: Nellcot Puritan Bennett Ireland
    Inventors: Scott McGonigle, James N. Watson
  • Patent number: 9687159
    Abstract: A patient monitoring system may generate a derivative signal from a physiological signal. The derivative signal may be filtered based on a pulse rate estimate associated with the physiological signal. A plurality of crossing points may be determined for the filtered derivative signal and translated to the derivative signal. A plurality of fiducial points may be determined for the derivative signal based on the plurality of crossing points. The plurality of fiducial points may be utilized to determine physiological information from the physiological signal.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: June 27, 2017
    Assignee: Covidien LP
    Inventors: James Ochs, Scott McGonigle
  • Patent number: 9675274
    Abstract: A patient monitoring system may receive a photoplethysmograph (PPG) signal including samples of a pulse waveform. The PPG signal may demonstrate morphology changes based on respiration. The system may calculate morphology metrics from the PPG signal, the first derivative of the PPG signal, the second derivative of the PPG signal, or any combination thereof. The morphology metrics may demonstrate amplitude modulation, baseline modulation, and frequency modulation of the PPG signal that is related to respiration. Morphology metric signals generated from the morphology metrics may be used to determine respiration information such as respiration rate.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: June 13, 2017
    Assignee: Nellcor Puritan Bennett Ireland
    Inventors: Scott McGonigle, Paul S. Addison, James Ochs, James Watson
  • Patent number: 9597022
    Abstract: Methods and systems are discussed for determining venous oxygen saturation by calculating a ratio of ratios from respiration-induced baseline modulations. A calculated venous ratio of ratios may be compared with a look-up table value to estimate venous oxygen saturation. A calculated venous ratio of ratios is compared with an arterial ratio of ratios to determine whether baseline modulations are the result of a subject's respiration or movement. Such a determination is also made by deriving a venous ratio of ratios using a transform technique, such as a continuous wavelet transform. Derived venous and arterial saturation values are used to non-invasively determine a cardiac output of the subject.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: March 21, 2017
    Assignee: Nellcor Puritan Bennett Ireland
    Inventors: Paul Addison, James Watson, James Ochs, Scott McGonigle
  • Patent number: 9560978
    Abstract: A patient monitoring system may receive a physiological signal such as a photoplethysmograph (PPG) signal. The PPG signal may include a pulsatile component that functions as a carrier signal and an amplitude modulation component that represents respiration information. The patient monitoring system may move the amplitude modulation component to a baseline component of the PPG signal. Respiration information may be calculated based on the amplitude modulation component.
    Type: Grant
    Filed: February 5, 2013
    Date of Patent: February 7, 2017
    Assignee: Covidien LP
    Inventors: Braddon M. Van Slyke, Ronald Kadlec, Scott McGonigle
  • Patent number: 9554712
    Abstract: A test unit may generate a pulse signal based on a pulsatile profile and a frequency modulation component of a respiratory profile. A respiration modulated signal may be generated from the pulse signal, an amplitude modulation component, and a baseline modulation component. A patient modulated signal may be generated based on the respiration modulated signal and a patient profile. The artificial PPG signal may be generated based on the patient modulated signal and an artifact profile. The artificial PPG signal may be output to an electronic device.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: January 31, 2017
    Assignee: Covidien LP
    Inventors: Braddon M. Van Slyke, Ronald Kadlec, Scott McGonigle, Michael Mestek, Paul Stanley Addison, James Nicholas Watson
  • Publication number: 20160278673
    Abstract: Methods and systems are provided for determining fluid responsiveness in the presence of noise. The system may determine an instantaneous value indicative of fluid responsiveness. In some embodiments, the system may determine a difference between an instantaneous value indicative of fluid responsiveness and a previous value indicative of fluid responsiveness, and select an update characteristic based on whether the difference indicates that the fluid responsiveness is increasing or decreasing. In some embodiments, the system may determine a parameter indicative of fluid responsiveness based on the update characteristic and a previously reported value indicative of fluid responsiveness.
    Type: Application
    Filed: March 8, 2016
    Publication date: September 29, 2016
    Inventors: Paul S. Addison, Scott McGonigle, James N. Watson
  • Patent number: 9402554
    Abstract: A signal representing physiological information may include information related to respiration. A patient monitoring system may utilize a wavelet transform to generate a scalogram from the signal. A threshold for the scalogram may be calculated, and scalogram values may be compared to the threshold. One of the scales meeting the threshold may be selected as representing respiration information such as respiration rate. The respiration information may be determined based on the selected scale.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: August 2, 2016
    Assignee: Nellcor Puritan Bennett Ireland
    Inventors: James Ochs, James Watson, Binwel Weng, Paul S. Addison, Scott McGonigle
  • Patent number: 9392975
    Abstract: According to embodiments, techniques for selecting a consistent part of a signal, including a photoplethysmograph (PPG) signal, are disclosed. A pulse oximetry system including a sensor or probe may be used to obtain a PPG signal from a subject. Signal peaks may be identified in the PPG signal. Characteristics of the signal peaks, including the amplitude levels of the signal peaks and/or the time-distance between the signal peaks may be used to determine if the PPG signal is consistent. In an embodiment, signal peaks are processed based on a consistency metric, and the processed signal peaks are compared to the consistency metric to determine if the PPG signal is consistent. If the PPG signal is determined to be consistent, the PPG signal may be further analyzed to determine an underlying signal parameter, including, for example, a patient respiration rate.
    Type: Grant
    Filed: September 6, 2013
    Date of Patent: July 19, 2016
    Assignee: Nellcor Puritan Bennett Ireland
    Inventors: Scott McGonigle, Paul S. Addison, James N. Watson
  • Publication number: 20160073965
    Abstract: Methods and systems are provided for determining fluid responsiveness based on a physiological signal. The system may determine fluid responsiveness based on the physiological signal and receive or determine respiration information of the subject. The system may correct the fluid responsiveness based on the respiration information. In some embodiments, the system may determine a correction factor to correct the fluid responsiveness values based on a relationship between fluid responsiveness and the respiration information. In some embodiments, the system may correct the measured fluid responsiveness based on an error between the fluid responsiveness measure and another measure such as pulse pressure variation, where there is a relationship between the error and the respiration information.
    Type: Application
    Filed: September 4, 2015
    Publication date: March 17, 2016
    Inventors: Paul Stanley Addison, Scott McGonigle, James Nicholas Watson, Rui Wang, Peter Doyle