Patents by Inventor Scott P Bobholz

Scott P Bobholz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230342156
    Abstract: Methods and apparatuses relating to mitigations for speculative execution side channels are described. Speculative execution hardware and environments that utilize the mitigations are also described. For example, three indirect branch control mechanisms and their associated hardware are discussed herein: (i) indirect branch restricted speculation (IBRS) to restrict speculation of indirect branches, (ii) single thread indirect branch predictors (STIBP) to prevent indirect branch predictions from being controlled by a sibling thread, and (iii) indirect branch predictor barrier (IBPB) to prevent indirect branch predictions after the barrier from being controlled by software executed before the barrier.
    Type: Application
    Filed: April 24, 2023
    Publication date: October 26, 2023
    Inventors: Jason W. Brandt, Deepak K. Gupta, Rodrigo Branco, Joseph Nuzman, Robert S. Chappell, Sergiu Ghetie, Wojciech Powiertowski, Jared W. Stark, IV, Ariel Sabba, Scott J. Cape, Hisham Shafi, Lihu Rappoport, Yair Berger, Scott P. Bobholz, Gilad Holzstein, Sagar V. Dalvi, Yogesh Bijlani
  • Patent number: 11635965
    Abstract: Methods and apparatuses relating to mitigations for speculative execution side channels are described. Speculative execution hardware and environments that utilize the mitigations are also described. For example, three indirect branch control mechanisms and their associated hardware are discussed herein: (i) indirect branch restricted speculation (IBRS) to restrict speculation of indirect branches, (ii) single thread indirect branch predictors (STIBP) to prevent indirect branch predictions from being controlled by a sibling thread, and (iii) indirect branch predictor barrier (IBPB) to prevent indirect branch predictions after the barrier from being controlled by software executed before the barrier.
    Type: Grant
    Filed: October 31, 2018
    Date of Patent: April 25, 2023
    Assignee: Intel Corporation
    Inventors: Jason W. Brandt, Deepak K. Gupta, Rodrigo Branco, Joseph Nuzman, Robert S. Chappell, Sergiu D. Ghetie, Wojciech Powiertowski, Jared W. Stark, IV, Ariel Sabba, Scott J. Cape, Hisham Shafi, Lihu Rappoport, Yair Berger, Scott P. Bobholz, Gilad Holzstein, Sagar V. Dalvi, Yogesh Bijlani
  • Publication number: 20220078027
    Abstract: Techniques and apparatuses for issuance of license upgrades for hardware components in the field, as well as the hardware components, are described. In one embodiment, for example an apparatus may include processor circuitry and memory in communication with the processor circuitry, wherein the memory contains a configuration data block and license data block, the configuration data block being read from the memory via a licensing apparatus and the licensing data block being written to the memory by the licensing apparatus. The processor may include executable code to process the licensing data block to facilitate an upgrade of the capabilities of the processor circuitry.
    Type: Application
    Filed: November 15, 2021
    Publication date: March 10, 2022
    Applicant: INTEL CORPORATION
    Inventors: SERGIU D. GHETIE, NEERAJ S. UPASANI, CHUKWUNENYE S. NNEBE, WON LEE, SHAILA R. MURTY, ARKADIUSZ BERENT, VASUKI CHILUKURI, DAVID T. MAYO, SCOTT P. BOBHOLZ, VINILA ROSE, WOJCIECH S. POWIERTOWSKI
  • Patent number: 11237614
    Abstract: In one embodiment, a multicore processor includes cores that can independently execute instructions, each at an independent voltage and frequency. The processor may include a power controller having logic to provide for configurability of power management features of the processor. One such feature enables at least one core to operate at an independent performance state based on a state of a single power domain indicator present in a control register. Other embodiments are described and claimed.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: February 1, 2022
    Assignee: Intel Corporation
    Inventors: Malini K. Bhandaru, Eric J. Dehaemer, Scott P. Bobholz, Raghunandan Makaram, Vivek Garg
  • Patent number: 11218322
    Abstract: Techniques and apparatuses for issuance of license upgrades for hardware components in the field, as well as the hardware components, are described. In one embodiment, for example an apparatus may include processor circuitry and memory in communication with the processor circuitry, wherein the memory contains a configuration data block and license data block, the configuration data block being read from the memory via a licensing apparatus and the licensing data block being written to the memory by the licensing apparatus. The processor may include executable code to process the licensing data block to facilitate an upgrade of the capabilities of the processor circuitry.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: January 4, 2022
    Assignee: INTEL CORPORATION
    Inventors: Sergiu D. Ghetie, Neeraj S. Upasani, Chukwunenye S. Nnebe, Won Lee, Shaila R. Murty, Arkadiusz Berent, Vasuki Chilukuri, David T. Mayo, Scott P. Bobholz, Vinila Rose, Wojciech S. Powiertowski
  • Patent number: 10877549
    Abstract: In one embodiment, a multicore processor includes cores that can independently execute instructions, each at an independent voltage and frequency. The processor may include a power controller having logic to provide for configurability of power management features of the processor. One such feature enables at least one core to operate at an independent performance state based on a state of a single power domain indicator present in a control register. Other embodiments are described and claimed.
    Type: Grant
    Filed: February 8, 2019
    Date of Patent: December 29, 2020
    Assignee: Intel Corporation
    Inventors: Malini K. Bhandaru, Eric J. Dehaemer, Scott P. Bobholz, Raghunandan Makaram, Vivek Garg
  • Publication number: 20200133679
    Abstract: Methods and apparatuses relating to mitigations for speculative execution side channels are described. Speculative execution hardware and environments that utilize the mitigations are also described. For example, three indirect branch control mechanisms and their associated hardware are discussed herein: (i) indirect branch restricted speculation (IBRS) to restrict speculation of indirect branches, (ii) single thread indirect branch predictors (STIBP) to prevent indirect branch predictions from being controlled by a sibling thread, and (iii) indirect branch predictor barrier (IBPB) to prevent indirect branch predictions after the barrier from being controlled by software executed before the barrier.
    Type: Application
    Filed: October 31, 2018
    Publication date: April 30, 2020
    Inventors: Jason W. Brandt, Deepak K. Gupta, Rodrigo Branco, Joseph Nuzman, Robert S. Chappell, Sergiu Ghetie, Wojciech Powiertowski, Jared W. Stark, IV, Ariel Sabba, Scott J. Cape, Hisham Shafi, Lihu Rappoport, Yair Berger, Scott P. Bobholz, Gilad Holzstein, Sagar V. Dalvi, Yogesh Bijlani
  • Publication number: 20190317585
    Abstract: In one embodiment, a multicore processor includes cores that can independently execute instructions, each at an independent voltage and frequency. The processor may include a power controller having logic to provide for configurability of power management features of the processor. One such feature enables at least one core to operate at an independent performance state based on a state of a single power domain indicator present in a control register. Other embodiments are described and claimed.
    Type: Application
    Filed: June 27, 2019
    Publication date: October 17, 2019
    Inventors: Malini K. Bhandaru, Eric J. Dehaemer, Scott P. Bobholz, Raghunandan Makaram, Vivek Garg
  • Publication number: 20190171274
    Abstract: In one embodiment, a multicore processor includes cores that can independently execute instructions, each at an independent voltage and frequency. The processor may include a power controller having logic to provide for configurability of power management features of the processor. One such feature enables at least one core to operate at an independent performance state based on a state of a single power domain indicator present in a control register. Other embodiments are described and claimed.
    Type: Application
    Filed: February 8, 2019
    Publication date: June 6, 2019
    Inventors: Malini K. Bhandaru, Eric J. Dehaemer, Scott P. Bobholz, Raghunandan Makaram, Vivek Garg
  • Publication number: 20190097810
    Abstract: Techniques and apparatuses for issuance of license upgrades for hardware components in the field, as well as the hardware components, are described. In one embodiment, for example an apparatus may include processor circuitry and memory in communication with the processor circuitry, wherein the memory contains a configuration data block and license data block, the configuration data block being read from the memory via a licensing apparatus and the licensing data block being written to the memory by the licensing apparatus. The processor may include executable code to process the licensing data block to facilitate an upgrade of the capabilities of the processor circuitry.
    Type: Application
    Filed: September 28, 2017
    Publication date: March 28, 2019
    Applicant: INTEL CORPORATION
    Inventors: SERGIU D. GHETIE, NEERAJ S. UPASANI, CHUKWUNENYE S. NNEBE, WON LEE, SHAILA R. MURTY, ARKADIUSZ BERENT, VASUKI CHILUKURI, DAVID T. MAYO, SCOTT P. BOBHOLZ, VINILA ROSE, WOJCIECH S. POWIERTOWSKI
  • Patent number: 10203741
    Abstract: In one embodiment, a multicore processor includes cores that can independently execute instructions, each at an independent voltage and frequency. The processor may include a power controller having logic to provide for configurability of power management features of the processor. One such feature enables at least one core to operate at an independent performance state based on a state of a single power domain indicator present in a control register. Other embodiments are described and claimed.
    Type: Grant
    Filed: February 19, 2016
    Date of Patent: February 12, 2019
    Assignee: Intel Corporation
    Inventors: Malini K. Bhandaru, Eric J. Dehaemer, Scott P. Bobholz, Raghunandan Makaram, Vivek Garg
  • Patent number: 10191532
    Abstract: In one embodiment, a multicore processor includes cores that can independently execute instructions, each at an independent voltage and frequency. The processor may include a power controller having logic to provide for configurability of power management features of the processor. One such feature enables at least one core to operate at an independent performance state based on a state of a single power domain indicator present in a control register. Other embodiments are described and claimed.
    Type: Grant
    Filed: February 19, 2016
    Date of Patent: January 29, 2019
    Assignee: Intel Corporation
    Inventors: Malini K. Bhandaru, Eric J. Dehaemer, Scott P. Bobholz, Raghunandan Makaram, Vivek Garg
  • Patent number: 9760155
    Abstract: In one embodiment, a multicore processor includes cores that can independently execute instructions, each at an independent voltage and frequency. The processor may include a power controller having logic to provide for configurability of power management features of the processor. One such feature enables at least one core to operate at an independent performance state based on a state of a single power domain indicator present in a control register. Other embodiments are described and claimed.
    Type: Grant
    Filed: December 7, 2015
    Date of Patent: September 12, 2017
    Assignee: Intel Corporation
    Inventors: Malini K. Bhandaru, Eric J. Dehaemer, Scott P. Bobholz, Raghunandan Makaram, Vivek Garg
  • Publication number: 20160378628
    Abstract: Hardware processors and methods to perform self-monitoring diagnostics to predict and detect failure are described. In one embodiment, a hardware processor includes a plurality of cores, and a diagnostic hardware unit to isolate a core of the plurality of cores at run-time, perform a stress test on an isolated core, determine a stress factor from a result of the stress test, and store the stress factor in a data storage device.
    Type: Application
    Filed: June 26, 2015
    Publication date: December 29, 2016
    Inventors: Hang T. Nguyen, Gordon McFadden, Travis J. White, Scott P. Bobholz, Edwin Verplanke, Steven C. Franks, Vivek Garg, Ashok Raj, Guy G. Sotomayor, Jose A. Vargas, Pradeepsunder Ganesh, Stephen T. Palermo
  • Patent number: 9436254
    Abstract: A method and apparatus for per core performance states in a processor. Per Core Performance States (PCPS) refer to the parallel operating of individual cores at different voltage and/frequency points. In one embodiment of the invention, the processor has a plurality of processing cores and a power control module that is coupled with each of the plurality of processing cores. The power control module facilitates each processing core to operate at a different performance state from the other processing cores. By allowing its cores to have per core performance state configuration, the processor is able to reduce its power consumption and increase its performance.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: September 6, 2016
    Assignee: Intel Corporation
    Inventors: Malini K. Bhandaru, Eric J. Dehaemer, Samuel W. Ho, Scott P. Bobholz, Chris Poirier
  • Publication number: 20160170468
    Abstract: In one embodiment, a multicore processor includes cores that can independently execute instructions, each at an independent voltage and frequency. The processor may include a power controller having logic to provide for configurability of power management features of the processor. One such feature enables at least one core to operate at an independent performance state based on a state of a single power domain indicator present in a control register. Other embodiments are described and claimed.
    Type: Application
    Filed: February 19, 2016
    Publication date: June 16, 2016
    Inventors: Malini K. Bhandaru, Eric J. Dehaemer, Scott P. Bobholz, Raghunandan Makaram, Vivek Garg
  • Publication number: 20160170478
    Abstract: In one embodiment, a multicore processor includes cores that can independently execute instructions, each at an independent voltage and frequency. The processor may include a power controller having logic to provide for configurability of power management features of the processor. One such feature enables at least one core to operate at an independent performance state based on a state of a single power domain indicator present in a control register. Other embodiments are described and claimed.
    Type: Application
    Filed: February 19, 2016
    Publication date: June 16, 2016
    Inventors: Malini K. Bhandaru, Eric J. Dehaemer, Scott P. Bobholz, Raghunandan Makaram, Vivek Garg
  • Patent number: 9323316
    Abstract: In one embodiment, the present invention includes a method for determining whether a number of stalled cores of a multicore processor is greater than a stall threshold. If so, a recommendation may be made that an operating frequency of system agent circuitry of the processor be increased. Then based on multiple recommendations, a candidate operating frequency of the system agent circuitry can be set. Other embodiments are described and claimed.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: April 26, 2016
    Assignee: Intel Corporation
    Inventors: Malini K. Bhandaru, Ankush Varma, James R. Vash, Monica Wong-Chan, Eric J. Dehaemer, Christopher Allan Poirier, Sr., Scott P. Bobholz
  • Publication number: 20160085293
    Abstract: In one embodiment, a multicore processor includes cores that can independently execute instructions, each at an independent voltage and frequency. The processor may include a power controller having logic to provide for configurability of power management features of the processor. One such feature enables at least one core to operate at an independent performance state based on a state of a single power domain indicator present in a control register. Other embodiments are described and claimed.
    Type: Application
    Filed: December 7, 2015
    Publication date: March 24, 2016
    Inventors: Malini K. Bhandaru, Eric J. Dehaemer, Scott P. Bobholz, Raghunandan Makaram, Vivek Garg
  • Patent number: 9235244
    Abstract: In one embodiment, a multicore processor includes cores that can independently execute instructions, each at an independent voltage and frequency. The processor may include a power controller having logic to provide for configurability of power management features of the processor. One such feature enables at least one core to operate at an independent performance state based on a state of a single power domain indicator present in a control register. Other embodiments are described and claimed.
    Type: Grant
    Filed: March 5, 2013
    Date of Patent: January 12, 2016
    Assignee: Intel Corporation
    Inventors: Malini K. Bhandaru, Eric J. Dehaemer, Scott P. Bobholz, Raghunandan Makaram, Vivek Garg