Patents by Inventor Scott P. Keller

Scott P. Keller has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9429944
    Abstract: Certain embodiments of the present invention provide robotic control modules for use in a robotic control system of a vehicle, including structures, systems and methods, that can provide (i) a robotic control module that has multiple functional circuits, such as a processor and accompanying circuits, an actuator controller, an actuator amplifier, a packet network switch, and a power supply integrated into a mountable and/or stackable package/housing; (ii) a robotic control module with the noted complement of circuits that is configured to reduce heat, reduce space, shield sensitive components from electro-magnetic noise; (iii) a robotic control system utilizing robotic control modules that include the sufficiently interchangeable functionality allowing for interchangeability of modules; and (iv) a robotic control system that distributes the functionality and processing among a plurality of robotic control modules in a vehicle.
    Type: Grant
    Filed: August 7, 2014
    Date of Patent: August 30, 2016
    Assignees: Deere & Company, iRobot Corporation
    Inventors: Mikhail O. Filippov, Osa Fitch, Scott P. Keller, John O'Connor, David S. Zendzian, Nadim El Fata, Kevin Larsen, Arlen Eugene Meuchel, Mark David Schmaltz, James Allard, Chris A. De Roo, William Robert Norris, Andrew Julian Norby, Christopher David Glenn Turner
  • Patent number: 9043016
    Abstract: Certain embodiments of the present invention provide robotic control modules for use in a robotic control system of a vehicle, including structures, systems and methods, that can provide (i) a robotic control module that has multiple functional circuits, such as a processor and accompanying circuits, an actuator controller, an actuator amplifier, a packet network switch, and a power supply integrated into a mountable and/or stackable package/housing; (ii) a robotic control module with the noted complement of circuits that is configured to reduce heat, reduce space, shield sensitive components from electro-magnetic noise; (iii) a robotic control system utilizing robotic control modules that include the sufficiently interchangeable functionality allowing for interchangeability of modules; and (iv) a robotic control system that distributes the functionality and processing among a plurality of robotic control modules in a vehicle.
    Type: Grant
    Filed: October 20, 2006
    Date of Patent: May 26, 2015
    Assignees: Deere & Company, iRobot Corporation
    Inventors: Mikhail O. Filippov, Osa Fitch, Scott P. Keller, John O'Connor, David S. Zendzian, Nadim El Fata, Kevin Larsen, Arlen Eugene Meuchel, Mark David Schmaltz, James Allard, Chris A. De Roo, William Robert Norris, Andrew Julian Norby, Christopher David Glenn Turner
  • Publication number: 20140350768
    Abstract: Certain embodiments of the present invention provide robotic control modules for use in a robotic control system of a vehicle, including structures, systems and methods, that can provide (i) a robotic control module that has multiple functional circuits, such as a processor and accompanying circuits, an actuator controller, an actuator amplifier, a packet network switch, and a power supply integrated into a mountable and/or stackable package/housing; (ii) a robotic control module with the noted complement of circuits that is configured to reduce heat, reduce space, shield sensitive components from electro-magnetic noise; (iii) a robotic control system utilizing robotic control modules that include the sufficiently interchangeable functionality allowing for interchangeability of modules; and (iv) a robotic control system that distributes the functionality and processing among a plurality of robotic control modules in a vehicle.
    Type: Application
    Filed: August 7, 2014
    Publication date: November 27, 2014
    Inventors: MIKHAIL O. FILIPPOV, OSA FITCH, SCOTT P. KELLER, JOHN O'CONNOR, DAVID S. ZENDZIAN, NADIM EL FATA, KEVIN LARSEN, ARLEN EUGENE MEUCHEL, MARK DAVID SCHMALTZ, JAMES ALLARD, CHRIS A. DE ROO, WILLIAM ROBERT NORRIS, ANDREW JULIAN NORBY, CHRISTOPHER DAVID GLENN TURNER
  • Patent number: 6025787
    Abstract: Apparatus and methods for calibrating a transducer measurement system having a plurality of subsystems, permitting total system calibration by a few selected adjustments without requiring complete system calibration when a new subsystem is added or a subsystem replaced and without requiring adjustments to be made to each individual subsystem. The measurement system provides a calibrated measurement signal indicative of a characteristic of an object with which the transducer interfaces. Each subsystem is characterized in terms of a minimum number of parameters associated therewith and the parameters are mathematically combined to reflect values of adjustable subsystem or system components. In this manner, variations associated with each separable subsystem from nominal, specified values, are combined and corrected by a single adjustment of a minimum number of selected adjustable components representing the degrees of freedom for errors in the system.
    Type: Grant
    Filed: February 7, 1996
    Date of Patent: February 15, 2000
    Assignee: ADE Corporation
    Inventors: Noel S. Poduje, Scott P. Keller, Roy Mallory
  • Patent number: 5557267
    Abstract: Apparatus and methods for calibrating a transducer measurement system having a plurality of subsystems, permitting total system calibration by a few selected adjustments without requiring complete system calibration when a new subsystem is added or a subsystem replaced and without requiring adjustments to be made to each individual subsystem. The measurement system provides a calibrated measurement signal indicative of a characteristic of an object with which the transducer interfaces. Each subsystem is characterized in terms of a minimum number of parameters associated therewith and the parameters are mathematically combined to reflect values of adjustable subsystem or system components. In this manner, variations associated with each separable subsystem from nominal, specified values, are combined and corrected by a single adjustment of a minimum number of selected adjustable components representing the degrees of freedom for errors in the system.
    Type: Grant
    Filed: April 23, 1993
    Date of Patent: September 17, 1996
    Assignee: ADE Corporation
    Inventors: Noel S. Poduje, Scott P. Keller, Roy Mallory