Patents by Inventor Scott Papp

Scott Papp has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11226534
    Abstract: Apparatus and methods for generating mid-IR frequency combs using intra-pulse DFG. A mode-locked pulse generation laser generates near-IR pulses which are amplified. The amplified pulses are spectrally broadened by a nonlinear element, for example a normal dispersion highly nonlinear fiber (ND-HNLF) to generate broadened pulses. The nonlinear spectral broadening element is a transparent dielectric material having a cubic nonlinear response. Broadened pulses are temporally compressed to generate short, high-power pulses which few-cycle conditioned pulses which are ready for the intrapulse DFG process. The DFG block generates a mid-IR comb by difference frequency generation. It might comprise an orientation patterned GaP (OP-GaP) crystal or a poled lithium niobate (PPLN) crystal.
    Type: Grant
    Filed: August 21, 2019
    Date of Patent: January 18, 2022
    Assignee: Fathom Radiant, PBC
    Inventors: Scott Diddams, Henry Timmers, Abijith J. Kowligy, Alexander Jacob Lind, Scott Papp
  • Publication number: 20200064708
    Abstract: Apparatus and methods for generating mid-IR frequency combs using intra-pulse DFG. A mode-locked pulse generation laser generates near-IR pulses which are amplified. The amplified pulses are spectrally broadened by a nonlinear element, for example a normal dispersion highly nonlinear fiber (ND-HNLF) to generate broadened pulses. The nonlinear spectral broadening element is a transparent dielectric material having a cubic nonlinear response. Broadened pulses are temporally compressed to generate short, high-power pulses which few-cycle conditioned pulses which are ready for the intrapulse DFG process. The DFG block generates a mid-IR comb by difference frequency generation. It might comprise an orientation patterned GaP (OP-GaP) crystal or a poled lithium niobate (PPLN) crystal.
    Type: Application
    Filed: August 21, 2019
    Publication date: February 27, 2020
    Inventors: Scott Diddams, Henry Timmers, Abijith J. Kowligy, Alexander Jacob Lind, Scott Papp
  • Patent number: 10048567
    Abstract: An electronic light synthesizer electronically synthesizes supercontinuum light and includes: a microwave modulator that: receives a continuous wave light including an optical frequency; modulates the continuous wave light at a microwave repetition frequency; and produces a frequency comb modulated at the microwave repetition frequency; a self-phase modulator that: receives the frequency comb; spectrally broadens an optical wavelength range of the frequency comb; and produces broadened light modulated at the microwave repetition frequency; an optical filter that: receives the broadened light from the self-phase modulator; and optically filters electronic noise in the broadened light; and a supercontinuum generator that: receives the broadened light from the optical filter; spectrally broadens the optical wavelength range of the broadened light; and produces supercontinuum light modulated at the microwave repetition frequency.
    Type: Grant
    Filed: March 20, 2017
    Date of Patent: August 14, 2018
    Assignee: THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY OF COMMERCE
    Inventors: Scott Papp, Scott Diddams, Katja Beha, Daniel Cole
  • Publication number: 20170277017
    Abstract: An electronic light synthesizer electronically synthesizes supercontinuum light, the electronic light synthesizer and includes: a microwave modulator that: receives a continuous wave light including an optical frequency; modulates the continuous wave light at a microwave repetition frequency; and produces a frequency comb including the optical frequency and modulated at the microwave repetition frequency; a self-phase modulator in optical communication with the microwave modulator and that: receives the frequency comb from the microwave modulator; spectrally broadens an optical wavelength range of the frequency comb; and produces broadened light including the optical frequency and modulated at the microwave repetition frequency; an optical filter in optical communication with the self-phase modulator and that: receives the broadened light from the self-phase modulator; and optically filters electronic noise in the broadened light; and a supercontinuum generator in optical communication with the optical filter
    Type: Application
    Filed: March 20, 2017
    Publication date: September 28, 2017
    Inventors: SCOTT PAPP, SCOTT DIDDAMS, KATJA BEHA, DANIEL COLE
  • Patent number: 9341781
    Abstract: An apparatus and technique are used to fabricate optical microresonators. A fabrication chamber contains all fabrication materials and devices. The microresonators are fabricated from a glass preform mounted on a motorized spindle. A laser is focused onto the preform to partly or fully impinge on the preform. The laser's focus position is controlled by changing the positioning of a lens mounted on a translation stage. Piezoelectric control elements may be mounted to finished microresonators to control of nonlinear parametric oscillation and four-wave mixing effects of the microresonator, control of nonlinear optical stimulated Brillouin scattering and Raman effects of said microresonator and wideband tuning of the frequency spacing between the output modes of a nonlinear-Kerr-effect optical frequency comb generated with said microresonator.
    Type: Grant
    Filed: September 9, 2013
    Date of Patent: May 17, 2016
    Assignee: The United States of America, as represented by the Secretary of Commerce The National Institute of Standards & Technology
    Inventors: Scott Diddams, Scott Papp, Pascal Del'Haye
  • Publication number: 20140090425
    Abstract: An apparatus and technique are used to fabricate optical microresonators. A fabrication chamber contains all fabrication materials and devices. The microresonators are fabricated from a glass preform mounted on a motorized spindle. A laser is focused onto the preform to partly or fully impinge on the preform. The laser's focus position is controlled by changing the positioning of a lens mounted on a translation stage. Piezoelectric control elements may be mounted to finished microresonators to control of nonlinear parametric oscillation and four-wave mixing effects of the microresonator, control of nonlinear optical stimulated Brillouin scattering and Raman effects of said microresonator and wideband tuning of the frequency spacing between the output modes of a nonlinear-Kerr-effect optical frequency comb generated with said microresonator.
    Type: Application
    Filed: September 9, 2013
    Publication date: April 3, 2014
    Applicant: The United States of America as represented by the Secretary of Commerce
    Inventors: Scott Diddams, Scott Papp, Pascal Del'Haye