Patents by Inventor Scott R. Bingham

Scott R. Bingham has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11589892
    Abstract: A surgical apparatus comprises a body, a user input feature, a shaft assembly, an end effector, and a blade cooling system. The end effector comprises a clamp arm and an ultrasonic blade that may be coupled with an ultrasonic transducer. The clamp arm is configured to pivot toward and away from the ultrasonic blade. The cooling system is operable to deliver liquid coolant to the ultrasonic blade to thereby cool the ultrasonic blade. The user input feature is operable to both actuate the clamp arm and actuate the cooling system.
    Type: Grant
    Filed: June 2, 2020
    Date of Patent: February 28, 2023
    Assignee: Cilag GmbH International
    Inventors: Michael J. Stokes, Scott R. Bingham, Ryan M. Asher, Charles J. Scheib, Rudolph H. Nobis, Frederick L. Estera, Benjamin D. Dickerson, Carl J. Draginoff, Jr., Jeffrey D. Messerly, David J. Cagle, Jacob S. Gee, William B. Weisenburgh, II, Omar E. Rios Perez, Chester O. Baxter, III, Karalyn R. Tellio, Benjamin M. Boyd, Rafael J. Ruiz Ortiz, Joël Fontannaz, Lukas S. Glutz, Amir Feriani, Emmanuel Gremion
  • Patent number: 11484358
    Abstract: An end effector of an electrosurgical device may include a first body, a first electrode on the left side of the first body, and a second electrode on the right side of the first body. The first and second electrodes may be configured to receive electrosurgical energy to treat tissue in a target treatment zone. The end effector may also include a fluid aspiration port in fluid communication with a fluid path. The fluid aspiration port may be configured to remove a material from the target treatment zone.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: November 1, 2022
    Assignee: Cilag GmbH International
    Inventors: David A. Witt, David C. Yates, Frederick E. Shelton, IV, Cory G. Kimball, Barry C. Worrell, Monica L. Rivard, Scott R. Bingham
  • Patent number: 11399855
    Abstract: In various embodiments, a surgical instrument is disclosed. The surgical instrument comprises a handle assembly having a closure trigger, a closure actuator coupled to the closure trigger at a first pivot, and a closure spring. The closure actuator moves proximally on a longitudinal axis in response to actuation of the closure trigger. The closure spring applies a force vector to the closure spring tangential to the longitudinal axis. A shaft assembly is coupled to the handle assembly. An end effector is coupled to a distal end of the shaft assembly. The end effector comprises a jaw assembly comprising a first jaw member and a second jaw member. The first jaw member is pivotally moveable with respect to the second jaw member. At least one of the first and second jaw members are operatively coupled to the closure actuator.
    Type: Grant
    Filed: October 5, 2018
    Date of Patent: August 2, 2022
    Assignee: Cilag GmbH International
    Inventors: Chad P. Boudreaux, Catherine A. Corbett, Gregory A. Trees, Scott R. Bingham
  • Publication number: 20200330121
    Abstract: A surgical apparatus comprises a body, a user input feature, a shaft assembly, an end effector, and a blade cooling system. The end effector comprises a clamp arm and an ultrasonic blade that may be coupled with an ultrasonic transducer. The clamp arm is configured to pivot toward and away from the ultrasonic blade. The cooling system is operable to deliver liquid coolant to the ultrasonic blade to thereby cool the ultrasonic blade. The user input feature is operable to both actuate the clamp arm and actuate the cooling system.
    Type: Application
    Filed: June 2, 2020
    Publication date: October 22, 2020
    Inventors: Michael J. Stokes, Scott R. Bingham, Ryan M. Asher, Charles J. Scheib, Rudolph H. Nobis, Frederick L. Estera, Benjamin D. Dickerson, Carl J. Draginoff, Jeffrey D. Messerly, David J. Cagle, Jacob S. Gee, William B. Weisenburgh, II, Omar E. Rios Perez, Chester O. Baxter, III, Karalyn R. Tellio, Benjamin M. Boyd, Rafael J. Ruiz Ortiz, Joël Fontannaz, Lukas S. Glutz, Amir Feriani, Emmanuel Gremion
  • Patent number: 10743898
    Abstract: Surgical devices are provided having power-assisted or fully powered jaw closure. The devices herein generally include a handle portion, an elongate shaft, and an effector having first and second jaws configured to engage tissue. A motor and one or more compression springs can be operatively coupled, and activation of the motor can compress the spring(s) to reduce the amount of user supplied force to compress tissue between the jaws. In some embodiments, the devices can be configured to regulate an amount of compression applied by the jaws prior to, during, and/or after cutting of the tissue to promote hemostasis. For example, the devices can include sensors, processors, and/or other components that analyze data indicative of tissue type and tissue load. Based on this feedback, the device can automatically adjust the amount of compression or energy applied to the tissue to seal the tissue.
    Type: Grant
    Filed: July 9, 2018
    Date of Patent: August 18, 2020
    Assignee: Ethicon LLC
    Inventors: John A. Hibner, Catherine A. Corbett, Scott R. Bingham, Chad P. Boudreaux, Carl J. Draginoff, Jr., Geoffrey S. Strobl, Eric N. Johnson
  • Patent number: 10292758
    Abstract: Electrosurgical instruments and associated methods are disclosed herein. Embodiments of the electrosurgical instruments can include an elongate shaft that can articulate an end effector relative to the elongate shaft, with the end effector including opposed jaws and positioned at a distal end of the elongate shaft. In addition, electrosurgical instruments are provided that include a cutting feature or knife that is coupled to the end effector and can axially translate relative to the elongate shaft. Furthermore, the knife can be rotated relative to the elongate shaft, which can cause simultaneous rotation of the end effector. Electrosurgical instruments are also provided that include an end effector including opposed jaws that are configured to rotate relative to the elongate shaft and grasp objects (i.e., via opening and closing the opposed jaws). Electrical energy can also be passed through the electrosurgical instrument for performing electrosurgical procedures.
    Type: Grant
    Filed: October 10, 2014
    Date of Patent: May 21, 2019
    Assignee: Ethicon LLC
    Inventors: Chad P. Boudreaux, Scott R. Bingham, Matthew C. Miller
  • Publication number: 20190105067
    Abstract: In various embodiments, a surgical instrument is disclosed. The surgical instrument comprises a handle assembly having a closure trigger, a closure actuator coupled to the closure trigger at a first pivot, and a closure spring. The closure actuator moves proximally on a longitudinal axis in response to actuation of the closure trigger. The closure spring applies a force vector to the closure spring tangential to the longitudinal axis. A shaft assembly is coupled to the handle assembly. An end effector is coupled to a distal end of the shaft assembly. The end effector comprises a jaw assembly comprising a first jaw member and a second jaw member. The first jaw member is pivotally moveable with respect to the second jaw member. At least one of the first and second jaw members are operatively coupled to the closure actuator.
    Type: Application
    Filed: October 5, 2018
    Publication date: April 11, 2019
    Inventors: Chad P. Boudreaux, Catherine A. Corbett, Gregory A. Trees, Scott R. Bingham
  • Publication number: 20190099213
    Abstract: Aspects of the present disclosure include control systems of an electrosurgical system for managing the flow of fluid, such as saline, and rates of aspiration or suction, in response to various states of conditions at a surgical site. The control system(s) may monitor and adjust to impedance at the surgical site, temperature of the surgical tissue, and/or RF current of electrodes, and may account for certain undesirable conditions, such as the electrodes sticking. The control systems may include various automatic sensing scenarios, while also allowing for several manual conditions.
    Type: Application
    Filed: September 29, 2017
    Publication date: April 4, 2019
    Inventors: David A. Witt, David C. Yates, Frederick E. Shelton, IV, Cory G. Kimball, Barry C. Worrell, Monica L. Rivard, Scott R. Bingham
  • Publication number: 20190099217
    Abstract: An end effector of an electrosurgical device may include a first body, a first electrode on the left side of the first body, and a second electrode on the right side of the first body. The first and second electrodes may be configured to receive electrosurgical energy to treat tissue in a target treatment zone. The end effector may also include a fluid aspiration port in fluid communication with a fluid path. The fluid aspiration port may be configured to remove a material from the target treatment zone.
    Type: Application
    Filed: September 29, 2017
    Publication date: April 4, 2019
    Inventors: David A. Witt, David C. Yates, Frederick E. Shelton, IV, Cory G. Kimball, Barry C. Worrell, Monica L. Rivard, Scott R. Bingham
  • Publication number: 20190000499
    Abstract: A surgical apparatus comprises a body, a user input feature, a shaft assembly, an end effector, and a blade cooling system. The end effector comprises a clamp arm and an ultrasonic blade that may be coupled with an ultrasonic transducer. The clamp arm is configured to pivot toward and away from the ultrasonic blade. The cooling system is operable to deliver liquid coolant to the ultrasonic blade to thereby cool the ultrasonic blade. The user input feature is operable to both actuate the clamp arm and actuate the cooling system.
    Type: Application
    Filed: May 7, 2018
    Publication date: January 3, 2019
    Inventors: Michael J. Stokes, Scott R. Bingham, Ryan M. Asher, Charles J. Scheib, Rudolph H. Nobis, Frederick L. Estera, Benjamin D. Dickerson, Carl J. Draginoff, JR., Jeffrey D. Messerly, David J. Cagle, Jacob S. Gee, William B. Weisenburgh, II, Omar E. Rios Perez, Chester O. Baxter, III, Karalyn R. Tellio, Benjamin M. Boyd, Rafael J. Ruiz Ortiz, Joël Fontannaz, Lukas Glutz, Amir Feriani, Emmanuel Gremion
  • Publication number: 20190000495
    Abstract: Surgical devices are provided having power-assisted or fully powered jaw closure. The devices herein generally include a handle portion, an elongate shaft, and an effector having first and second jaws configured to engage tissue. A motor and one or more compression springs can be operatively coupled, and activation of the motor can compress the spring(s) to reduce the amount of user supplied force to compress tissue between the jaws. In some embodiments, the devices can be configured to regulate an amount of compression applied by the jaws prior to, during, and/or after cutting of the tissue to promote hemostasis. For example, the devices can include sensors, processors, and/or other components that analyze data indicative of tissue type and tissue load. Based on this feedback, the device can automatically adjust the amount of compression or energy applied to the tissue to seal the tissue.
    Type: Application
    Filed: July 9, 2018
    Publication date: January 3, 2019
    Inventors: John A. Hibner, Catherine A. Corbett, Scott R. Bingham, Chad P. Boudreaux, Carl J. Draginoff, JR., Geoffrey S. Strobl, Eric N. Johnson
  • Patent number: 10092310
    Abstract: In various embodiments, a surgical instrument is disclosed. The surgical instrument comprises a handle assembly having a closure trigger, a closure actuator coupled to the closure trigger at a first pivot, and a closure spring. The closure actuator moves proximally on a longitudinal axis in response to actuation of the closure trigger. The closure spring applies a force vector to the closure spring tangential to the longitudinal axis. A shaft assembly is coupled to the handle assembly. An end effector is coupled to a distal end of the shaft assembly. The end effector comprises a jaw assembly comprising a first jaw member and a second jaw member. The first jaw member is pivotally moveable with respect to the second jaw member. At least one of the first and second jaw members are operatively coupled to the closure actuator.
    Type: Grant
    Filed: March 27, 2014
    Date of Patent: October 9, 2018
    Assignee: Ethicon LLC
    Inventors: Chad P. Boudreaux, Catherine A. Corbett, Gregory A. Trees, Scott R. Bingham
  • Patent number: 10039564
    Abstract: Surgical devices are provided having power-assisted or fully powered jaw closure. The devices herein generally include a handle portion, an elongate shaft, and an effector having first and second jaws configured to engage tissue. A motor and one or more compression springs can be operatively coupled, and activation of the motor can compress the spring(s) to reduce the amount of user supplied force to compress tissue between the jaws. In some embodiments, the devices can be configured to regulate an amount of compression applied by the jaws prior to, during, and/or after cutting of the tissue to promote hemostasis. For example, the devices can include sensors, processors, and/or other components that analyze data indicative of tissue type and tissue load. Based on this feedback, the device can automatically adjust the amount of compression or energy applied to the tissue to seal the tissue.
    Type: Grant
    Filed: September 30, 2014
    Date of Patent: August 7, 2018
    Assignee: Ethicon LLC
    Inventors: John A. Hibner, Catherine A. Corbett, Scott R. Bingham, Chad P. Boudreaux, Carl J. Draginoff, Jr., Geoffrey S. Strobl, Eric N. Johnson
  • Patent number: 10010309
    Abstract: Methods and devices are provided for preventing surgical devices used in laparoscopic procedures including opposed jaws and an overload mechanism from overloading the opposed jaws of the device. In one embodiment a surgical device, includes a handle and an elongate shaft extending distally therefrom with opposed jaws coupled to a distal end thereof. The surgical device can include a trigger pivotally movable about a first pivot axis during a first range of motion from an open position toward a closed position, to cause the opposed jaws of the end effector to move from an open position to a partially closed position. The trigger can further be pivotally movable about a second pivot axis during a second range of motion from the partially closed position to the fully closed position, without causing corresponding movement of the opposed jaws from the open position to the closed position.
    Type: Grant
    Filed: October 10, 2014
    Date of Patent: July 3, 2018
    Assignee: Ethicon LLC
    Inventor: Scott R. Bingham
  • Patent number: 10004529
    Abstract: A surgical apparatus comprises a body, a user input feature, a shaft assembly, an end effector, and a blade cooling system. The end effector comprises a clamp arm and an ultrasonic blade that may be coupled with an ultrasonic transducer. The clamp arm is configured to pivot toward and away from the ultrasonic blade. The cooling system is operable to deliver liquid coolant to the ultrasonic blade to thereby cool the ultrasonic blade. The user input feature is operable to both actuate the clamp arm and actuate the cooling system.
    Type: Grant
    Filed: November 25, 2014
    Date of Patent: June 26, 2018
    Assignee: Ethicon LLC
    Inventors: Michael J. Stokes, Scott R. Bingham, Ryan M. Asher, Charles J. Scheib, Rudolph H. Nobis, Benjamin D. Dickerson, Jeffrey D. Messerly, David J. Cagle, Jacob S. Gee, William B. Weisenburgh, II, Omar E. Rios Perez, Chester O. Baxter, III, Karalyn R. Tellio, Benjamin M. Boyd, Rafael J. Ruiz Ortiz, Joël Fontannaz, Lukas S. Glutz, Amir Feriani, Emmanuel Gremion
  • Publication number: 20160278848
    Abstract: A surgical instrument that includes an end effector and a trigger that is actuatable between a first position and a second position. An actuation drive is movable between an unactuated position and an actuated position in response to actuation of the trigger. A toggle assembly is transitionable between a folded configuration and an expanded configuration, wherein the toggle assembly is configured to motivate the actuation drive to effectuate a movement in the end effector in the folded configuration. The toggle assembly being configured to bypass the actuation drive when in the expanded configuration. A resetting member is operable to return the toggle assembly to the folded configuration.
    Type: Application
    Filed: March 24, 2015
    Publication date: September 29, 2016
    Inventors: Chad P. Boudreaux, Scott R. Bingham, Benjamin D. Dickerson, Jason R. Lesko
  • Publication number: 20160143658
    Abstract: A surgical apparatus comprises a body, a user input feature, a shaft assembly, an end effector, and a blade cooling system. The end effector comprises a clamp arm and an ultrasonic blade that may be coupled with an ultrasonic transducer. The clamp arm is configured to pivot toward and away from the ultrasonic blade. The cooling system is operable to deliver liquid coolant to the ultrasonic blade to thereby cool the ultrasonic blade. The user input feature is operable to both actuate the clamp arm and actuate the cooling system.
    Type: Application
    Filed: November 25, 2014
    Publication date: May 26, 2016
    Inventors: Michael J. Stokes, Scott R. Bingham, Ryan M. Asher, Charles J. Scheib, Rudolph H. Nobis, Frederick L. Estera, Benjamin D. Dickerson, Carl J. Draginoff, Jr., Jeffrey D. Messerly, David J. Cagle, Jacob S. Gee, William B. Weisenburgh, II, Omar E. Rios Perez, Chester O. Baxter, III, Karalyn R. Tellio, Benjamin M. Boyd, Rafael J. Ruiz Ortiz, Joël Fontannaz, Lukas S. Glutz, Amir Feriani, Emmanuel Gremion
  • Publication number: 20160100882
    Abstract: Electrosurgical instruments and associated methods are disclosed herein. Embodiments of the electrosurgical instruments can include an elongate shaft that can articulate an end effector relative to the elongate shaft, with the end effector including opposed jaws and positioned at a distal end of the elongate shaft. In addition, electrosurgical instruments are provided that include a cutting feature or knife that is coupled to the end effector and can axially translate relative to the elongate shaft. Furthermore, the knife can be rotated relative to the elongate shaft, which can cause simultaneous rotation of the end effector. Electrosurgical instruments are also provided that include an end effector including opposed jaws that are configured to rotate relative to the elongate shaft and grasp objects (i.e., via opening and closing the opposed jaws). Electrical energy can also be passed through the electrosurgical instrument for performing electrosurgical procedures.
    Type: Application
    Filed: October 10, 2014
    Publication date: April 14, 2016
    Inventors: Chad P. Boudreaux, Scott R. Bingham, Matthew C. Miller
  • Publication number: 20160100902
    Abstract: Methods and devices are provided for preventing surgical devices used in laparoscopic procedures including opposed jaws and an overload mechanism from overloading the opposed jaws of the device. In one embodiment a surgical device, includes a handle and an elongate shaft extending distally therefrom with opposed jaws coupled to a distal end thereof. The surgical device can include a trigger pivotally movable about a first pivot axis during a first range of motion from an open position toward a closed position, to cause the opposed jaws of the end effector to move from an open position to a partially closed position. The trigger can further be pivotally movable about a second pivot axis during a second range of motion from the partially closed position to the fully closed position, without causing corresponding movement of the opposed jaws from the open position to the closed position.
    Type: Application
    Filed: October 10, 2014
    Publication date: April 14, 2016
    Inventor: Scott R. Bingham
  • Publication number: 20160089175
    Abstract: Surgical devices are provided having power-assisted or fully powered jaw closure. The devices herein generally include a handle portion, an elongate shaft, and an effector having first and second jaws configured to engage tissue. A motor and one or more compression springs can be operatively coupled, and activation of the motor can compress the spring(s) to reduce the amount of user supplied force to compress tissue between the jaws. In some embodiments, the devices can be configured to regulate an amount of compression applied by the jaws prior to, during, and/or after cutting of the tissue to promote hemostasis. For example, the devices can include sensors, processors, and/or other components that analyze data indicative of tissue type and tissue load. Based on this feedback, the device can automatically adjust the amount of compression or energy applied to the tissue to seal the tissue.
    Type: Application
    Filed: September 30, 2014
    Publication date: March 31, 2016
    Inventors: John A. Hibner, Catherine A. Corbett, Scott R. Bingham, Chad P. Boudreaux, Carl J. Draginoff, JR., Geoffrey S. Strobl, Eric N. Johnson