Patents by Inventor Scott R. Culler

Scott R. Culler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240010893
    Abstract: Abrasive particles comprising shaped abrasive particles each having a sidewall, each of the shaped abrasive particles comprising alpha alumina and having a first face and a second face separated by a sidewall and having a maximum thickness, T; and the shaped abrasive particles further comprising a plurality of grooves on the second face.
    Type: Application
    Filed: September 25, 2023
    Publication date: January 11, 2024
    Inventors: John T. Boden, Dwight D. Erickson, Scott R. Culler, Negus B. Adefris, John D. Haas
  • Patent number: 11767454
    Abstract: Abrasive particles comprising shaped abrasive particles each having a sidewall, each of the shaped abrasive particles comprising alpha alumina and having a first face and a second face separated by a sidewall and having a maximum thickness, T; and the shaped abrasive particles further comprising a plurality of grooves on the second face.
    Type: Grant
    Filed: April 4, 2018
    Date of Patent: September 26, 2023
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: John T. Boden, Dwight D. Erickson, Scott R. Culler, Negus B. Adefris, John D. Haas
  • Patent number: 11707816
    Abstract: The method generally involves the steps of filling the cavities in a production tool each with an individual abrasive particle. Aligning a filled production tool and a resin coated backing for transfer of the abrasive particles to the resin coated backing. Transferring the abrasive particles from the cavities onto the resin coated backing and removing the production tool from the aligned position with the resin coated backing. Thereafter the resin layer is cured, a size coat is applied and cured and the coated abrasive article is converted to sheet, disk, or belt form by suitable converting equipment.
    Type: Grant
    Filed: November 18, 2019
    Date of Patent: July 25, 2023
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Steven J. Keipert, John T. Boden, Scott R. Culler
  • Patent number: 11505730
    Abstract: Various embodiments disclosed relate to an abrasive article (10). The abrasive article (10 includes a backing (12) defining a major surface. The abrasive article (10) includes an abrasive layer including a plurality of tetrahedral abrasive particles (16) attached to the backing (12). The tetrahedral abrasive particles (16) include four faces joined by six edges terminating at four vertices (40, 42, 44, 46). Each one of the four faces contacts three of the four faces, and a major portion of the tetrahedral abrasive particles (16) have at least one of the vertices (40, 42, 44, 46) oriented in substantially a same direction.
    Type: Grant
    Filed: May 11, 2018
    Date of Patent: November 22, 2022
    Assignee: 3M Innovative Properties Company
    Inventors: Laura M. Lara Rodriguez, Chainika Jangu, Scott R. Culler, Negus B. Adefris, Gregory S. Mueller, Jon T. Schwartz, Brian G. Koethe, Robinette S. Alkhas, Ronald D. Apple, Ernest L. Thurber
  • Patent number: 11344998
    Abstract: The method generally involves the steps of filling the cavities in a production tool each with an individual abrasive particle. Aligning a filled production tool and a resin coated backing for transfer of the abrasive particles to the resin coated backing. Transferring the abrasive particles from the cavities onto the resin coated backing and removing the production tool from the aligned position with the resin coated backing. Thereafter the resin layer is cured, a size coat is applied and cured and the coated abrasive article is converted to sheet, disk, or belt form by suitable converting equipment.
    Type: Grant
    Filed: December 11, 2014
    Date of Patent: May 31, 2022
    Assignee: 3M Innovative Properties Company
    Inventors: Scott R. Culler, John T. Boden, Steven J. Keipert, Negus B. Adefris
  • Publication number: 20210308832
    Abstract: A structured abrasive article comprises a backing having first and second opposed major surfaces and an abrasive layer securely bonded to the first major surface of the backing. The abrasive layer comprises shaped abrasive composites. Each shaped abrasive composite has four sides, a height, and abase that faces the first major surface of the backing. The shaped abrasive composites have an average height of 410 to 650 microns and an average side length at the base of 550 to 1450 microns. The shaped abrasive composites comprise non-magnetizable shaped abrasive platelets that have an average side length of 150 to 350 microns and an average thickness of 40 to 120 microns. Methods of making and using are also disclosed.
    Type: Application
    Filed: August 7, 2019
    Publication date: October 7, 2021
    Inventors: Damon Smyth, Nicola Pullan, Scott R. Culler
  • Publication number: 20210268627
    Abstract: The present disclosure provides an abrasive article (10). The abrasive article (10) has a direction of use, a y-axis and a z-axis orthogonal to the y-axis and the direction of use. The abrasive article (10) further includes a backing (12) and shaped abrasive particles attached to the backing. About 5% to about 100% of the shaped abrasive particles (14) independently include a first side surface (16), a second side surface (18) opposed to the first side surface (16), a leading surface (20) connected to the first side surface (16) at a first edge (24) and connected to the second side surface (18) at a second edge (26), a rake angle (30) between the backing (12) and the leading surface (20) in a range of from about 10 degrees to about 110 degrees, and a z-direction rotational angle (50) between a line (52) intersecting the first edge (16) and second edge (18) and the direction of use (22) of the abrasive article (10) in a range of from about 10 degrees to about 170 degrees.
    Type: Application
    Filed: April 17, 2019
    Publication date: September 2, 2021
    Inventors: Negus B. Adefris, Scott R. Culler, Joseph B. Eckel, John D. Haas, Thomas J. Nelson, Aaron K. Nienaber, Steven J. Keipert, Vincent Jusuf, Fay T. Salmon, Yuzhi Xia, Michael J. Wald
  • Patent number: 10987780
    Abstract: Shaped abrasive particles each having a sloping sidewall. Each of the shaped abrasive particles containing alpha alumina and having a first face and a second face separated by a thickness, t. The shaped abrasive particles further having a draft angle ? between the second face and the sloping sidewall, and the draft angle ? is between about 95 degrees to about 125 degrees.
    Type: Grant
    Filed: February 15, 2012
    Date of Patent: April 27, 2021
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Negus B. Adefris, Dwight D. Erickson, Scott R. Culler, John T. Boden, John D. Haas
  • Patent number: 10785900
    Abstract: Electrically conductive articles are provided, including a composite including (a) a resin, and (b) electrically conductive shaped particles distributed in the resin, the particles having a monosized distribution. Each particle has a shape including at least a first surface and a second surface intersecting the first surface at an angle a between about 5 degrees and about 150 degrees. The composite has a thickness and often each of the electrically conductive shaped particles distributed in the resin is oriented within the resin such that the particle does not extend beyond the thickness of the composite. A method for making an electrically conductive article is also provided, including (a) providing electrically conductive shaped particles having a monosized distribution, and (b) distributing the particles into a resin to form a composite.
    Type: Grant
    Filed: November 10, 2014
    Date of Patent: September 22, 2020
    Assignee: 3M Innovative Properties Company
    Inventors: Dipankar Ghosh, Jeffrey W. McCutcheon, Scott R. Culler
  • Publication number: 20200199425
    Abstract: Various embodiments disclosed relate to an abrasive article (10). The abrasive article (10 includes a backing (12) defining a major surface. The abrasive article (10) includes an abrasive layer including a plurality of tetrahedral abrasive particles (16) attached to the backing (12). The tetrahedral abrasive particles (16) include four faces joined by six edges terminating at four vertices (40, 42, 44, 46). Each one of the four faces contacts three of the four faces, and a major portion of the tetrahedral abrasive particles (16) have at least one of the vertices (40, 42, 44, 46) oriented in substantially a same direction.
    Type: Application
    Filed: May 11, 2018
    Publication date: June 25, 2020
    Inventors: Laura M. Lara Rodriguez, Chainika Jangu, Scott R. Culler, Negus B. Adefris, Gregory S. Mueller, Jon T. Schwartz, Brian G. Koethe, Robinette S. Alkhas, Ronald D. Apple, Ernest L. Thurber
  • Patent number: 10675734
    Abstract: A coated abrasive article maker apparatus is disclosed comprising a first web path comprising a production tool and a second web path configured for a resin coated backing. The second web path is configured to guide the resin coated backing through the coated abrasive article maker apparatus with the resin layer positioned facing the dispensing surface. An abrasive particle feeder is positioned along the first web path and is configured to dispense abrasive particles onto the dispensing surface such that abrasive particles are removably disposed within cavities of the production tool. Abrasive particles are transferred from the plurality of cavities to the resin layer of the resin coated backing when the production tool is positioned adjacent the resin coated backing.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: June 9, 2020
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Scott R. Culler, John T. Boden, Steven J. Keipert, Negus B. Adefris, Karan Jindal, Aaron K. Nienaber, David L. Morrison, Peter T. Benson, Pratik Pranay, Bradford B. Wright
  • Publication number: 20200139512
    Abstract: A coated abrasive article maker apparatus is disclosed comprising a first web path comprising a production tool and a second web path configured for a resin coated backing. The second web path is configured to guide the resin coated backing through the coated abrasive article maker apparatus with the resin layer positioned facing the dispensing surface. An abrasive particle feeder is positioned along the first web path and is configured to dispense abrasive particles onto the dispensing surface such that abrasive particles are removably disposed within cavities of the production tool. Abrasive particles are transferred from the plurality of cavities to the resin layer of the resin coated backing when the production tool is positioned adjacent the resin coated backing.
    Type: Application
    Filed: December 19, 2019
    Publication date: May 7, 2020
    Inventors: Scott R. Culler, John T. Boden, Steven J. Keipert, Negus B. Adefris, Karan Jindal, Aaron K. Nienaber, David L. Morrison, Peter T. Benson, Pratik Pranay, Bradford B. Wright
  • Patent number: 10611001
    Abstract: The method generally involves the steps of filling the cavities in a production tool each with an individual abrasive particle. Aligning a filled production tool and a resin coated backing for transfer of the abrasive particles to the resin coated backing. Transferring the abrasive particles from the cavities onto the resin coated backing and removing the production tool from the aligned position with the resin coated backing. Thereafter the resin layer is cured, a size coat is applied and cured and the coated abrasive article is converted to sheet, disk, or belt form by suitable converting equipment.
    Type: Grant
    Filed: November 21, 2018
    Date of Patent: April 7, 2020
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Scott R. Culler, John T. Boden, Steven J. Keipert, Negus B. Adefris
  • Publication number: 20200078904
    Abstract: The method generally involves the steps of filling the cavities in a production tool each with an individual abrasive particle. Aligning a filled production tool and a resin coated backing for transfer of the abrasive particles to the resin coated backing. Transferring the abrasive particles from the cavities onto the resin coated backing and removing the production tool from the aligned position with the resin coated backing. Thereafter the resin layer is cured, a size coat is applied and cured and the coated abrasive article is converted to sheet, disk, or belt form by suitable converting equipment.
    Type: Application
    Filed: November 18, 2019
    Publication date: March 12, 2020
    Inventors: Steven J. Keipert, John T. Boden, Scott R. Culler
  • Patent number: 10518388
    Abstract: A coated abrasive article maker apparatus including a first web path guiding a production tool such that it wraps a portion of the outer circumference of an abrasive particle transfer roll; a second web path for a resin coated backing guiding the resin coated backing such that it wraps a portion of the outer circumference of the abrasive particle transfer roll with the resin layer positioned facing the dispensing surface of the production tool this is positioned between the resin coated backing and the outer circumference of the abrasive particle transfer roll; and wherein abrasive particles are transferred from cavities in the production tool to the resin coated backing as the resin coated backing and the production tool traverse around the abrasive particle transfer roll.
    Type: Grant
    Filed: December 22, 2014
    Date of Patent: December 31, 2019
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Scott R. Culler, John T. Boden, Steven J. Keipert, Negus B. Adefris, Karan Jindal, Aaron K. Nienaber, David L. Morrison, Peter T. Benson, Pratik Pranay, Bradford B. Wright
  • Patent number: 10493596
    Abstract: The method generally involves the steps of filling the cavities in a production tool each with an individual abrasive particle. Aligning a filled production tool and a resin coated backing for transfer of the abrasive particles to the resin coated backing. Transferring the abrasive particles from the cavities onto the resin coated backing and removing the production tool from the aligned position with the resin coated backing. Thereafter the resin layer is cured, a size coat is applied and cured and the coated abrasive article is converted to sheet, disk, or belt form by suitable converting equipment.
    Type: Grant
    Filed: August 17, 2015
    Date of Patent: December 3, 2019
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Steven J. Keipert, John T. Boden, Scott R. Culler
  • Publication number: 20190264082
    Abstract: In various embodiments, the present invention provides a structured abrasive article. The structured abrasive article includes an abrasive layer disposed on a backing. The abrasive layer includes shaped abrasive composites, which include abrasive particles dispersed in a polymeric binder. Each of the shaped abrasive composites independently includes a contoured base, which includes a first end disposed on the backing, a second end, and a plurality of sidewalls connecting the first end and the second end. A plurality of walls extends away from the contoured base. The abrasive article additionally includes a grinding surface, which includes a plurality of cusps and a plurality of facets that contact a recessed feature capable of being contained within a geometric plane. A portion of the recessed feature is disposed closer to the contoured base than is each of the cusps, and each cusp is formed by an intersection of two of the walls and a facet.
    Type: Application
    Filed: November 9, 2017
    Publication date: August 29, 2019
    Inventors: Negus B. Adefris, Scott R. Culler, Meinolf Stenns, Juan A. Munoz, Nicholas D. Richardson
  • Publication number: 20190233693
    Abstract: Various embodiments disclosed relate to shaped abrasive particles having sharp tips, methods of making the shaped abrasive particles, methods of abrading a substrate with the shaped abrasive particles, and coated abrasive articles including the shaped abrasive particles. The shaped abrasive particle includes a ceramic, has a polygonal cross-sectional shape along a longitudinal axis of the shaped abrasive particle, and at least one tip of the shaped abrasive particle has a radius of curvature of less than or equal to about 19.2 microns.
    Type: Application
    Filed: July 31, 2017
    Publication date: August 1, 2019
    Inventors: Dwight D. Erickson, Ian R. Owen, Shawn C. Dodds, Matthew S. Stay, Scott R. Culler, John T. Boden, William C. Quade, Joseph D. Solem, Negus B. Adefris, Chainika Jangu, Thomas J. Anderson, Gregory S. Mueller, William Blake Kolb
  • Patent number: 10300581
    Abstract: Methods of making abrasive articles involve adhering shaped abrasive particles to a reinforcing member according to a predetermined pattern and optionally orientation, and depositing a space-filling binder precursor on the reinforcing member and shaped abrasive particles to provide a filled abrasive preform, disposing another reinforcing member onto the filled abrasive preform, and curing the abrasive article precursor to form the abrasive articles. In some aspects, multiple abrasive preforms are stacked on each other. Bonded abrasive wheels preparable according to the methods are also disclosed.
    Type: Grant
    Filed: September 14, 2015
    Date of Patent: May 28, 2019
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Melissa C. Schillo-Armstrong, Scott R. Culler, Brian D. Goers, Roger J. Eicheldinger, Negus B. Adefris
  • Patent number: 10293466
    Abstract: Structured abrasive articles include a backing and shaped abrasive composites secured to the backing. The shaped abrasive composites include abrasive grits dispersed in a binder matrix. The shaped abrasive composites include a bottom surface and a top surface opposite and not contacting the bottom surface, and at least three sidewalls abutting both the bottom and top surfaces and two other sidewalls. In one embodiment, at least two cusps are formed by the top surface and individual sidewalls. In another embodiment, the top surface includes at least two triangular facets that contact at least two respective sidewalls and at least two cusps. The top surface includes at least one interior recessed portion nearer the cusps than the bottom surface. Methods of abrading a workpiece using the structured abrasive article are also disclosed.
    Type: Grant
    Filed: November 4, 2014
    Date of Patent: May 21, 2019
    Assignee: 3M Innovative Properties Company
    Inventors: John D. Haas, Negus B. Adefris, Scott R. Culler