Patents by Inventor Scott R. Stanslaski

Scott R. Stanslaski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11596795
    Abstract: An implantable medical device (IMD) is described capable of determining whether a patient is susceptible to freezing of gait events during ambulatory movement without the patient demonstrating an episode of freezing of gait. In one example, the IMD senses, via one or more electrodes, a bioelectrical signal of a brain of the patient while the patient performs movement associated with freezing of gait. The IMD determines, based on the bioelectrical signal, whether the patient is susceptible to freezing of gait while the patient is not experiencing an episode of freezing of gait. Further, upon detecting the movement associated with freezing of gait, the IMD delivers electrical stimulation therapy to the patient configured to suppress freezing of gait.
    Type: Grant
    Filed: July 31, 2017
    Date of Patent: March 7, 2023
    Assignee: MEDTRONIC, INC.
    Inventors: Jianping Wu, Scott R. Stanslaski
  • Publication number: 20230062062
    Abstract: An example system includes a memory; and processing circuitry configured to: cause an implantable stimulation device to deliver a plurality of doses of electrical stimulation to a patient; receive, for each respective dose of the plurality of doses, a respective electrical signal of a plurality of electrical signals; and determine, based on a variation of the plurality of electrical signals, whether the plurality of doses of electrical stimulation evoked neural potentials in the patient.
    Type: Application
    Filed: August 15, 2022
    Publication date: March 2, 2023
    Inventors: Leonid M. Litvak, Scott R. Stanslaski, Erik J. Peterson
  • Patent number: 11571576
    Abstract: Devices, systems, and techniques are disclosed for managing electrical stimulation therapy and/or sensing of physiological signals such as brain signals. For example, a system may assist a clinician in identifying one or more electrode combinations for sensing a brain signal. In another example, a user interface may display brain signal information and values of a stimulation parameter at least partially defining electrical stimulation delivered to a patient when the brain signal information was sensed.
    Type: Grant
    Filed: December 31, 2020
    Date of Patent: February 7, 2023
    Assignee: Medtronic, Inc.
    Inventors: Evan D. Schnell, Scott R. Stanslaski, Ilan D. Gordon, Steven M. Goetz, Hijaz M. Haris, Eric J. Panken, Timothy R. Abraham, Thomas L. Chouinard, Susan Heilman Kilbane, Karan Chitkara, Christopher M. Arnett, Alicia W. Thompson, Kevin C. Johnson, Ankush Thakur, Lukas Valine, Christopher L. Pulliam, Brady N. Fetting, Rucha Gokul G. Samant, Andrew H. Houchins, Caleb C. Zarns
  • Patent number: 11529518
    Abstract: Various embodiments concern delivering electrical stimulation to the brain at a plurality of different levels of a stimulation parameter and sensing a bioelectrical response of the brain to delivery of the electrical stimulation for each of the plurality of different levels of the stimulation parameter. A suppression window of the stimulation parameter can be identified as having a suppression threshold as a lower boundary and an after-discharge threshold as an upper boundary based on the sensed bioelectrical responses. A therapy level of the stimulation parameter can be set for therapy delivery based on the suppression window. The therapy level of the stimulation parameter may be set closer to the suppression threshold than the after-discharge threshold within the suppression window. Data for hippocampal stimulation demonstrating a suppression window is presented.
    Type: Grant
    Filed: April 14, 2020
    Date of Patent: December 20, 2022
    Assignee: Medtronic, Inc.
    Inventors: Jonathon E. Giftakis, Paul H. Stypulkowski, Timothy J. Denison, Scott R. Stanslaski
  • Publication number: 20220387802
    Abstract: Devices, systems, and techniques for monopolar recording of sensed electrical signals are disclosed. An example device includes sensing circuitry configured to sense electrical signals from a first plurality of electrode combinations, each of the first plurality of electrode combinations comprising a same reference electrode of the plurality of electrodes and at least one different sense electrode of the plurality of electrodes, the plurality of electrodes being associated with one or more leads. The example device includes processing circuitry configured to record the sensed electrical signals from the first plurality of electrode combinations. The processing circuitry is also configured to provide representations of the recorded sensed electrical signals.
    Type: Application
    Filed: June 3, 2022
    Publication date: December 8, 2022
    Inventors: Michelle A. Case, Scott R. Stanslaski, Caleb C. Zarns
  • Patent number: 11511115
    Abstract: Systems and method may be used for interfacing with a patient. Systems may include a plurality of electrodes in electrical communication with a processor. The processor may be configured to receive sense signals from electrodes and to determine the reliability of the received signal. A test tone signal comprising a test tone frequency may be applied, and the magnitude of the test tone frequency may be analyzed in the received signal. If it is determined that the magnitude of the test tone frequency is below a threshold, the system may take action, such as lowering the gain on an amplifier. Stimulation signals may be applied to the patient at a stimulation frequency simultaneously with one or both of receiving sense signals and providing the test tone signal.
    Type: Grant
    Filed: August 23, 2018
    Date of Patent: November 29, 2022
    Assignee: MEDTRONIC, INC.
    Inventors: Timothy J. Denison, Pedram Afshar, Scott R. Stanslaski
  • Publication number: 20220287646
    Abstract: A method for artifact suppression in a sensed signal includes receiving the sensed signal sensed in a brain of a patient, wherein the sensed signal includes a neural signal and artifacts from a cardiac signal, decomposing the sensed signal into a plurality of components of the sensed signal, determining a first group of components, from the plurality of components, that are correlated with one another, determining an estimate of the cardiac signal based on the first group of components, wherein the estimate of the cardiac signal includes the cardiac signal and components of the neural signal, and generating a denoised neural signal based on the estimate of the cardiac signal and a second group of components of the plurality of components of the sensed signal, wherein the cardiac signal is suppressed in the denoised neural signal, and wherein the second group of components excludes the first group of components.
    Type: Application
    Filed: March 9, 2022
    Publication date: September 15, 2022
    Inventors: Claudia Sannelli, Eric J. Panken, Mirko de Melis, Gaetano Leogrande, Scott R. Stanslaski
  • Publication number: 20220266023
    Abstract: A method for assessment of brain signals of a patient includes determining, by one or more processors, a cluster of neural data occurring at a brain of the patient and outputting, by the one or more processors, a request for a user to provide patient state information for the cluster of the neural data in response to determining that the cluster of the neural data is occurring at the brain of the patient. The method further includes associating, by the one or more processors, the patient state information with the cluster of the neural data to generate patient assessment information and outputting, by the one or more processors, the patient assessment information.
    Type: Application
    Filed: January 18, 2022
    Publication date: August 25, 2022
    Inventors: Leonid M. Litvak, Steven M. Goetz, Christopher L. Pulliam, Scott R. Stanslaski
  • Publication number: 20220266035
    Abstract: A stimulation engine configured to identify a fault condition in an implantable lead, including a regulator configured to deliver an electrical pulse between at least two electrodes of the implantable stimulation lead, and a sensing module configured to detect at least an initial voltage and a subsequent voltage between the at least two electrodes at different times during delivery of the electrical pulse, and compare at least the subsequent voltage to a defined threshold value representing an expected voltage at the same time during the electrical pulse to determine the presence of a fault condition.
    Type: Application
    Filed: February 23, 2022
    Publication date: August 25, 2022
    Inventors: Timothy R. Abraham, Nathan A. Torgerson, Scott R. Stanslaski
  • Publication number: 20220266031
    Abstract: An example method includes determining, by an implantable medical device (IMD), an electrode of a plurality of electrodes of a lead to be used to deliver electrical stimulation to a patient at a particular time; selecting, by the IMD and based on the determined electrode, a set of electrodes of the plurality of electrodes; and sensing, by the IMD and via the selected set of electrodes, electrical signals of the patient at the particular time.
    Type: Application
    Filed: February 16, 2022
    Publication date: August 25, 2022
    Inventors: Benjamin P. Isaacson, David E. Linde, Scott R. Stanslaski, Christopher L. Pulliam, Rene A. Molina, Abbey Beuning Holt Becker, David L. Carlson, Nicholas D. Buse, Duane L. Bourget, Thaddeus S. Brink
  • Publication number: 20220266041
    Abstract: An implantable medical device that includes a memory, stimulation circuitry configured to deliver electrical stimulation to a patient, and processing circuitry operably coupled to the memory. The processing circuitry is configured to: control the stimulation circuitry to output electrical stimulation therapy to a patient via a first electrode combination and control the stimulation circuitry to output a notification stimulation via a second electrode combination and interleaved with the electrical stimulation therapy. The notification stimulation may include an intensity above a perception level of the patient, and the second electrode combination may include an electrode disposed at an implant site of the implantable medical device.
    Type: Application
    Filed: December 22, 2021
    Publication date: August 25, 2022
    Inventors: Jonathon E. Giftakis, Scott R. Stanslaski, William C. Harding, Ryan Gertenbach, Brian L. Bechard, Nathan A. Torgerson
  • Publication number: 20220266039
    Abstract: A system that includes a movement sensor configured to be implanted within a patient and generate a movement signal and processing circuitry configured to be implanted within the patient and configured to: receive the movement signal from the movement sensor and determine that the movement signal is representative of a communication from the patient. Responsive to determining that the movement signal is representative of the communication, the processing circuitry may cause an alert associated with the communication to be output to the patient. The processing circuitry may also perform an action requested by the communication.
    Type: Application
    Filed: December 22, 2021
    Publication date: August 25, 2022
    Inventors: Jonathon E. Giftakis, Scott R. Stanslaski, William C. Harding, Ryan Gertenbach, Brian L. Bechard, Nathan A. Torgerson
  • Publication number: 20220266040
    Abstract: Processing circuitry of a medical device configured to determine that a condition occurred. The condition may be associated with at least one of a patient or an implantable medical device. Responsive to determining that the condition occurred, access instructions stored at a memory for selecting an alert mode from a plurality of alert modes, then select the alert mode based on the condition. Responsive to selecting the alert mode, output, in the selected alert mode, a notification that indicates the condition occurred.
    Type: Application
    Filed: December 22, 2021
    Publication date: August 25, 2022
    Inventors: Jonathon E. Giftakis, Scott R. Stanslaski, William C. Harding, Ryan Gertenbach, Brian L. Bechard, Nathan A. Torgerson
  • Publication number: 20220249846
    Abstract: Techniques, systems, and devices are disclosed for delivering stimulation therapy to a patient. In one example, a medical device determines a first set of stimulation parameters that define entrainment stimulation pulses configured to entrain electrical activity in a patient. The medical device may control a stimulation generator to generate the entrainment stimulation pulses according to the first set of stimulation parameters. The medical device may further determine a second set of stimulation parameters that define at least one desynchronization stimulation pulse configured to disrupt at least a portion of the electrical activity entrained by the entrainment stimulation pulses. The medical device may subsequently control the stimulation generator to generate the desynchronization stimulation pulse(s) according to the second set of stimulation parameters.
    Type: Application
    Filed: February 28, 2022
    Publication date: August 11, 2022
    Inventors: Rene A. Molina, Robert S. Raike, Scott R. Stanslaski
  • Patent number: 11376434
    Abstract: Devices, systems, and techniques are configured for identifying stimulation parameter values based on electrical stimulation that induces dyskinesia for the patient. For example, a method may include controlling, by processing circuitry, a medical device to deliver electrical stimulation to a portion of a brain of a patient, receiving, by the processing circuitry, information representative of an electrical signal sensed from the brain after delivery of the electrical stimulation, determining, by the processing circuitry and from the information representative of the electrical signal, a peak in a spectral power of the electrical signal at a second frequency lower than a first frequency of the electrical stimulation, and responsive to determining the peak in the spectral power of the electrical signal at the second frequency, performing, by the processing circuitry, an action.
    Type: Grant
    Filed: July 31, 2020
    Date of Patent: July 5, 2022
    Assignee: Medtronic, Inc.
    Inventors: Rene A. Molina, Scott R. Stanslaski, Jadin C. Jackson, Christopher L. Pulliam, Eric J. Panken, Michelle A. Case, Abbey Beuning Holt Becker
  • Publication number: 20220176134
    Abstract: Systems and methods that automatically adjust, or adapt, stimulation waveforms delivered to brain structures. Closed loop system embodiments can automatically be reconfigured into a more suitable closed loop control system in response to measures of control system performance. Measures can be internal performance characteristics of the adaptive control system or external inputs provided by another subsystem. As these measures change in time, the robust adaptive system changes in response.
    Type: Application
    Filed: December 3, 2021
    Publication date: June 9, 2022
    Inventors: Thomas L. Chouinard, Scott R. Stanslaski, Timothy R. Abraham, Robert S. Raike
  • Patent number: 11318296
    Abstract: Techniques are disclosed to automate determination of therapy parameter values for adaptive deep brain stimulation (aDBS). A medical device may determine differences in power values between a present and a previous power value. Based on the difference being greater than or equal to a threshold value, the medical device may iteratively adjust a present therapy parameter value until the difference in the power values between a present and a previous power value is less than the threshold value.
    Type: Grant
    Filed: October 26, 2018
    Date of Patent: May 3, 2022
    Assignee: MEDTRONIC, INC.
    Inventors: Yizi Xiao, Eric J. Panken, Scott R. Stanslaski, Jadin C. Jackson, Christopher Pulliam
  • Patent number: 11315682
    Abstract: Techniques are described for real-time phase detection. For the phase detection, a signal is correlated with a frequency component of a frequency band whose phase is being detected, and the correlation includes predominantly decreasing weighting of past portions of the signals.
    Type: Grant
    Filed: January 6, 2020
    Date of Patent: April 26, 2022
    Assignee: MEDTRONIC, INC.
    Inventors: Robert A. Corey, Gregory J. Loxtercamp, Heather Diane Orser, Scott R. Stanslaski, Jadin C. Jackson
  • Publication number: 20220062640
    Abstract: Devices, systems, and techniques for identifying electrodes closest to a target region of tissue are described. In one example, a device includes sensing circuitry configured to sense electrical signals from a plurality of electrode combinations. Processing circuitry identifies a first electrode combination of a first subset of electrode combinations. Each electrode combination of the first subset of electrode combination includes electrodes located at different axial positions along a length of the medical lead. The processing circuitry identifies a second electrode combination of a second subset of electrode combinations. Each electrode combination of the second subset of electrode combinations includes electrodes located at a same axial position and different circumferential positions around a perimeter of the medical lead. The processing circuitry then determines a third electrode combination and controls delivery of electrical stimulation via the third electrode combination.
    Type: Application
    Filed: August 31, 2021
    Publication date: March 3, 2022
    Inventors: Robert S. Raike, Jadin C. Jackson, Scott R. Stanslaski, Eric J. Panken, Christopher L. Pulliam, Timothy R. Abraham, Michelle A. Case, Paula Andrea Elma Dassbach Green, Abbey Beuning Holt Becker, Rene A. Molina
  • Patent number: 11260231
    Abstract: Techniques, systems, and devices are disclosed for delivering stimulation therapy to a patient. In one example, a medical device determines a first set of stimulation parameters that define entrainment stimulation pulses configured to entrain electrical activity in a patient. The medical device may control a stimulation generator to generate the entrainment stimulation pulses according to the first set of stimulation parameters. The medical device may further determine a second set of stimulation parameters that define at least one desynchronization stimulation pulse configured to disrupt at least a portion of the electrical activity entrained by the entrainment stimulation pulses. The medical device may subsequently control the stimulation generator to generate the desynchronization stimulation pulse(s) according to the second set of stimulation parameters.
    Type: Grant
    Filed: January 24, 2020
    Date of Patent: March 1, 2022
    Assignee: Medtronic, Inc.
    Inventors: Rene A. Molina, Robert S. Raike, Scott R. Stanslaski