Patents by Inventor Scott R. Stubbs

Scott R. Stubbs has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8630718
    Abstract: A medical device lead includes a proximal connector, an insulative lead body extending distally from the proximal connector. The proximal connector is configured to couple the lead to a pulse generator. A first conductive coil is coupled to the proximal connector and extends through the lead body. The first conductive coil is coupled to a first electrode at a distal end of the first conductive coil. A first magnetically impregnated polymer layer is adjacent the first conductive coil.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: January 14, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Jeffrey E. Stahmann, Scott R. Stubbs, Arthur J. Foster
  • Patent number: 8571661
    Abstract: Energy delivered from an implantable medical device to stimulate tissue within a patient's body is controlled. An electrical signal used to stimulate the tissue is changed from a first energy state to a second energy state during a magnetic resonance imaging (MRI) scan. The energy delivered is maintained at the second energy state after the MRI scan. A capture threshold of the tissue is then measured, and the energy delivered to the tissue is adjusted based on the measured capture threshold of the tissue.
    Type: Grant
    Filed: September 28, 2009
    Date of Patent: October 29, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Scott R. Stubbs, Kevin G. Wika
  • Patent number: 8565874
    Abstract: An implantable medical device (IMD) includes a lead having one or more sensing electrodes and one or more therapy delivery electrodes, and a sensor configured to detect the presence of static and time-varying scan fields in a magnetic resonance imaging (MRI) environment. A controller, in electrical communication with the lead and the sensor, is configured to process signals related to tachycardia events sensed via the one or more sensing electrodes and to deliver pacing and shock therapy signals via the one or more therapy delivery electrodes. The controller compares the sensed static and time-varying scan fields to static and time-varying scan field thresholds. The controller controls delivery of anti-tachycardia pacing and shock therapy signals as a function of the detected tachycardia events, the comparison of the sensed static scan field to the static scan field threshold, and the comparison of the time-varying scan fields to the time-varying scan field thresholds.
    Type: Grant
    Filed: October 19, 2010
    Date of Patent: October 22, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Scott R. Stubbs, James O. Gilkerson, Hiten J. Doshi, Diane Schuster
  • Patent number: 8538550
    Abstract: An implantable device, such as a pacer, defibrillator, or other cardiac rhythm management device, can include a failsafe backup, such as a separate and independent safety core that can assume control over operation of the implantable device from a primary controller. In an example, the safety core can include a normal first safety core operating mode and a magnetic resonance imaging (MRI) second safety core operating mode that can provide different functionality from the normal first safety core operating mode.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: September 17, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Scott R. Stubbs, Joseph M. Bocek, Hiten J. Doshi
  • Patent number: 8509910
    Abstract: This document discusses, among other things, an implantable device comprising a communication circuit configured to communicate with an external device, a logic circuit communicatively coupled to the communication circuit, and a processor, communicatively coupled to the logic circuit and the communication circuit. The processor is configured to communicate information with the external device, via the communication circuit and the logic circuit, using a set of communication messages. While in a device safety mode, the processor is held in an inactive state and the logic circuit is configured to communicate with the external device using a subset of the set of communication messages.
    Type: Grant
    Filed: December 4, 2008
    Date of Patent: August 13, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Conrad L. Sowder, Thomas J. Harris, Douglas J. Gifford, William J. Linder, Hiten J. Doshi, Scott R. Stubbs, Kenneth P. Hoyme
  • Patent number: 8402467
    Abstract: A system and method for providing fault resilient processing in an implantable medical device is provided. A processor and memory store are provided in an implantable medical device. Separate times on the processor are scheduled to a plurality of processes. Separate memory spaces in the memory store are managed by exclusively associating one such separate memory space with each of the processes. Data is selectively validated prior to exchange from one of the processes to another of the processes during execution in the separate processor times.
    Type: Grant
    Filed: April 3, 2009
    Date of Patent: March 19, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Scott R. Stubbs, Kenneth P. Hoyme
  • Patent number: 8390418
    Abstract: This document discusses, among other things, an inductive component that can include a core having two portions: (1) a first portion composed of a first material having a first magnetic saturation level; and (2) a second portion composed of a second material selected to provide inductance for the inductive component when an external magnetic field is greater than the first magnetic saturation level. In an example, the first portion can be composed of a material having a relatively low magnetic saturation level (e.g., a ferrite), and the second portion can be composed of a material having a relatively high magnetic saturation level (e.g., a high permeability iron alloy).
    Type: Grant
    Filed: December 23, 2010
    Date of Patent: March 5, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Jeffrey E. Stahmann, Scott R. Stubbs, Arthur Foster
  • Publication number: 20130041444
    Abstract: A medical device lead includes a lead body having a proximal end and a distal end. The proximal end is configured for connection to a pulse generator. One or more electrodes are at a distal end of the lead body, and a lead conductor extends through the lead body and is electrically coupled to at least one of the one or more electrodes. The conductor is configured to deliver electrical signals between the proximal end and the at least one of the one or more electrodes. A sacrificial conductor extends through the lead body adjacent to lead conductor and is configured to fail at a lower stress than the lead conductor.
    Type: Application
    Filed: July 13, 2012
    Publication date: February 14, 2013
    Inventors: Arthur J. Foster, Christopher Perrey, Jeffrey E. Stahmann, Scott R. Stubbs
  • Patent number: 8347149
    Abstract: Embodiments herein generally relate to implantable medical devices and, specifically, to a system and method for providing fault tolerant processing in an implantable medical device. In an embodiment a system for providing fault tolerant processing in an implantable medical device is provided. The system can include an implantable medical device comprising a processor and memory store configured to execute a plurality of threads, temporal and spatial constraints assigned to one or more of the threads, and a kernel. The kernel can include a scheduler and a thread monitor configured to monitor execution of threads against the temporal and spatial constraints, and further configured to issue a response upon violation of either of the constraints by one of the plurality of threads. In an embodiment a method for providing fault tolerant processing in an implantable medical device is provided. Other embodiments are also included herein.
    Type: Grant
    Filed: September 28, 2009
    Date of Patent: January 1, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Scott R. Stubbs, Conrad L. Sowder, Kenneth P. Hoyme, William J. Linder, Hiten J. Doshi, Lynn S. Elliott
  • Patent number: 8306630
    Abstract: A medical device lead includes an insulative lead body, outer and inner conductive coils, and a flexible core assembly. The outer conductive coil extends through the lead body and is coupled to a first electrode at a distal end of the outer conductive coil. The inner conductive coil extends coaxially with the outer conductive coil, is coupled to a second electrode at a distal end of the inner conductive coil, and includes a central lumen. The flexible core assembly is disposed in the central lumen and is comprised of a material that has a saturation magnetization of at least about 1.5 T and a relative permeability of greater than one. The flexible core assembly includes a positioning interface configured for manipulation of the flexible core assembly such that the flexible core assembly translates through the central lumen during insertion and extraction of the flexible core assembly.
    Type: Grant
    Filed: October 15, 2010
    Date of Patent: November 6, 2012
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Scott R. Stubbs, Jeffrey E. Stahmann, Arthur J. Foster, Ronald W. Kunkel
  • Publication number: 20120143273
    Abstract: A medical device lead includes a proximal connector configured to couple the lead to a pulse generator, and an insulative lead body extending distally from the proximal connector. The first lead conductor is coupled to the proximal connector and extends through the lead body. The medical device lead also includes a distal defibrillation electrode. A first spark gap is connected between the first lead conductor and the distal defibrillation electrode and has a breakdown voltage that prevents transmission of magnetic resonance imaging (MRI) induced signals from the first lead conductor to the distal defibrillation electrode in an MRI environment and allows transmission of therapy signals to the distal defibrillation electrode.
    Type: Application
    Filed: September 21, 2011
    Publication date: June 7, 2012
    Inventors: Scott R. Stubbs, Arthur J. Foster
  • Publication number: 20120130453
    Abstract: A medical device lead includes a proximal connector, an insulative lead body extending distally from the proximal connector. The proximal connector is configured to couple the lead to a pulse generator. A first conductive coil is coupled to the proximal connector and extends through the lead body. The first conductive coil is coupled to a first electrode at a distal end of the first conductive coil. A first magnetically impregnated polymer layer is adjacent the first conductive coil.
    Type: Application
    Filed: September 22, 2011
    Publication date: May 24, 2012
    Inventors: Jeffrey E. Stahmann, Scott R. Stubbs, Arthur J. Foster
  • Patent number: 8170670
    Abstract: A system and method is disclosed for system fault recovery by an implantable medical device which employs a global fault response. The system enables the device to consistently recover from transient faults while maintaining a history of the reason for the device fault. Upon detection of a fault, the primary controller of the device signals a reset controller which then issues a reset command. All sub-systems of the primary device controller are then reset together rather than resetting individual sub-systems independently to ensure deterministic behavior.
    Type: Grant
    Filed: January 26, 2009
    Date of Patent: May 1, 2012
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Scott R. Stubbs, Conrad L. Sowder, William J. Linder, Lynn S. Elliott, Kenneth P. Hoyme, Hiten J. Doshi
  • Publication number: 20120004694
    Abstract: A medical device can include a therapy circuit configured to provide a specified electrostimulation therapy to a tissue site, the specified electrostimulation therapy including a scheduled completion, the therapy circuit including a protection circuit configured to adjust specification of the electrostimulation therapy being provided so as to provide an adjusted electrostimulation therapy before the scheduled completion. The medical device can include a monitoring circuit comprising a comparator. The monitoring circuit can be configured to trigger the protection circuit to inhibit the therapy circuit when the therapy circuit output parameter exceeds the specified threshold as indicated by the comparator.
    Type: Application
    Filed: June 22, 2011
    Publication date: January 5, 2012
    Inventors: Jacob M. Ludwig, William J. Linder, Douglas J. Brandner, Nicholas J. Stessman, Douglas Michael Hannan, Scott R. Stubbs, Jeffrey E. Stahmann, Arthur Foster
  • Patent number: 8053740
    Abstract: An implantable medical apparatus comprises a solid state electronic circuit, an ionizing radiation exposure sensor, an ionizing radiation dose rate sensor, and a controller circuit. The ionizing radiation exposure sensor is configured to detect an exposure of the solid state electronic circuit to ionizing radiation, and generate an indication of a non-single-event-upset (non-SEU) effect to the solid state electronic circuit from the exposure to ionizing radiation, wherein the sensor comprises an accumulated ionizing radiation exposure sensor. The controller circuit is configured to blank the indication from the accumulated ionizing radiation exposure sensor when the radiation dose rate sensor indicates that flux ionizing radiation exceeds a flux ionizing radiation threshold.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: November 8, 2011
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Jeffrey E. Stahmann, William J. Linder, Scott R. Stubbs, Keith R. Maile
  • Publication number: 20110166449
    Abstract: An implantable medical apparatus comprises a solid state electronic circuit, an ionizing radiation exposure sensor, an ionizing radiation dose rate sensor, and a controller circuit. The ionizing radiation exposure sensor is configured to detect an exposure of the solid state electronic circuit to ionizing radiation, and generate an indication of a non-single-event-upset (non-SEU) effect to the solid state electronic circuit from the exposure to ionizing radiation, wherein the sensor comprises an accumulated ionizing radiation exposure sensor. The controller circuit is configured to blank the indication from the accumulated ionizing radiation exposure sensor when the radiation dose rate sensor indicates that flux ionizing radiation exceeds a flux ionizing radiation threshold.
    Type: Application
    Filed: March 9, 2011
    Publication date: July 7, 2011
    Inventors: Jeffrey E. Stahmann, William J. Linder, Scott R. Stubbs, Keith R. Maile
  • Publication number: 20110163834
    Abstract: This document discusses, among other things, an inductive component that can include a core having two portions: (1) a first portion composed of a first material having a first magnetic saturation level; and (2) a second portion composed of a second material selected to provide inductance for the inductive component when an external magnetic field is greater than the first magnetic saturation level. In an example, the first portion can be composed of a material having a relatively low magnetic saturation level (e.g., a ferrite), and the second portion can be composed of a material having a relatively high magnetic saturation level (e.g., a high permeability iron alloy).
    Type: Application
    Filed: December 23, 2010
    Publication date: July 7, 2011
    Inventors: Jeffrey E. Stahmann, Scott R. Stubbs, Arthur Foster
  • Publication number: 20110160565
    Abstract: A plurality of separate indications of a scanner field can be received using a corresponding plurality of scanner field sensors of an implantable medical device (IMD). In an example, the IMD can be switched from a first therapy mode to a second therapy mode using one or more of the plurality of scanner field sensors, and from the second therapy mode back to the first therapy mode using each of the plurality of scanner field sensors. In certain examples, shock therapy can be terminated or inhibited using a detected proximity of the IMD to a magnetic resonance imaging (MRI) scanner, or antitachycardia pacing (ATP) can be terminated or inhibited using a detected active scan of the MRI scanner.
    Type: Application
    Filed: November 30, 2010
    Publication date: June 30, 2011
    Inventors: Scott R. Stubbs, Keith R. Maile
  • Publication number: 20110156706
    Abstract: Physiologic information can be received from a subject during a portion of a magnetic resonance imaging (MRI) session using a sensing circuit of an implantable medical device (IMD). An indication of an active MRI scan can be received, and a time period to inhibit use of physiological information from the subject can be determined following the received indication of the active MRI scan.
    Type: Application
    Filed: December 13, 2010
    Publication date: June 30, 2011
    Inventors: Scott R. Stubbs, Yingbo Li, Joseph M. Bocek
  • Publication number: 20110160602
    Abstract: An implantable device, such as a pacer, defibrillator, or other cardiac rhythm management device, can include an automatic testing and adjusting of cardiac signal sensing after an MRI scanning procedure, such as to accommodate an MRI-induced physiological change in sensed cardiac depolarization amplitude or in lead impedance such as at an electrode/tissue interface.
    Type: Application
    Filed: November 1, 2010
    Publication date: June 30, 2011
    Inventors: Scott R. Stubbs, Jeffrey E. Stahmann