Patents by Inventor Scott Rommel

Scott Rommel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080008413
    Abstract: Liquid crystal waveguides for dynamically controlling the refraction of light. Generally, liquid crystal materials may be disposed within a waveguide in a cladding proximate or adjacent to a core layer of the waveguide. In one example, portions of the liquid crystal material can be induced to form refractive or lens shapes in the cladding that interact with a portion (e.g. evanescent) of light in the waveguide so as to permit electronic control of the refraction/bending, focusing, or defocusing of light as it travels through the waveguide. In one example, a waveguide may be formed using one or more patterned or shaped electrodes that induce formation of such refractive or lens shapes of liquid crystal material, or alternatively, an alignment layer may have one or more regions that define such refractive or lens shapes to induce formation of refractive or lens shapes of the liquid crystal material.
    Type: Application
    Filed: July 6, 2007
    Publication date: January 10, 2008
    Inventors: Michael Anderson, Scott Rommel, Scott Davis
  • Publication number: 20080008414
    Abstract: Liquid crystal waveguides for dynamically controlling the refraction of light. Generally, liquid crystal materials may be disposed within a waveguide in a cladding proximate or adjacent to a core layer of the waveguide. In one example, portions of the liquid crystal material can be induced to form refractive or lens shapes in the cladding that interact with a portion (e.g. evanescent) of light in the waveguide so as to permit electronic control of the refraction/bending, focusing, or defocusing of light as it travels through the waveguide. In one example, a waveguide may be formed using one or more patterned or shaped electrodes that induce formation of such refractive or lens shapes of liquid crystal material, or alternatively, an alignment layer may have one or more regions that define such refractive or lens shapes to induce formation of refractive or lens shapes of the liquid crystal material.
    Type: Application
    Filed: July 6, 2007
    Publication date: January 10, 2008
    Inventors: Michael Anderson, Scott Rommel, Scott Davis
  • Publication number: 20050271325
    Abstract: Liquid crystal waveguides for dynamically controlling the refraction of light. Generally, liquid crystal materials may be disposed within a waveguide in a cladding proximate or adjacent to a core layer of the waveguide. In one example, portions of the liquid crystal material can be induced to form refractive or lens shapes in the cladding that interact with a portion (e.g. evanescent) of light in the waveguide so as to permit electronic control of the refraction/bending, focusing, or defocusing of light as it travels through the waveguide. In one example, a waveguide may be formed using one or more patterned or shaped electrodes that induce formation of such refractive or lens shapes of liquid crystal material, or alternatively, an alignment layer may have one or more regions that define such refractive or lens shapes to induce formation of refractive or lens shapes of the liquid crystal material.
    Type: Application
    Filed: October 12, 2004
    Publication date: December 8, 2005
    Inventors: Michael Anderson, Scott Rommel, Scott Davis
  • Publication number: 20050265403
    Abstract: A tunable laser for providing a laser beam with a selectable wavelength. In one example, the tunable laser includes a gain medium for generating the laser beam; a waveguide for processing the laser beam, the waveguide having liquid crystal material or other electro-optic material disposed therein; an optical path length control element disposed within said waveguide for controlling an effective optical path length of the laser cavity; and a wavelength selective element for controlling the wavelength of the laser beam. The tunable laser may be designed without any moving mechanical parts if desired.
    Type: Application
    Filed: January 21, 2005
    Publication date: December 1, 2005
    Inventors: Michael Anderson, Scott Davis, Scott Rommel