Patents by Inventor Scott Stanford

Scott Stanford has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11911899
    Abstract: A tendon-driven robotic gripper is disclosed for performing fingertip and enveloping grasps. One embodiment comprises two fingers, each with two links, and is actuated using a single active tendon. During unobstructed closing, the distal links remain parallel, creating exact fingertip grasps. Conversely, if the proximal links are stopped by contact with an object, the distal links start flexing, creating a stable enveloping grasp. The route of the active tendon and the parameters of the springs providing passive extension forces are optimized in order to achieve this behavior. An additional passive tendon is disclosed that may be used as a constraint preventing the gripper from entering undesirable parts of the joint workspace. A method for optimizing the dimensions of the links in order to achieve enveloping grasps of a large range of objects is disclosed and applied to a set of common household objects.
    Type: Grant
    Filed: February 13, 2023
    Date of Patent: February 27, 2024
    Assignee: Willow Garage, LLC
    Inventors: Matei Ciocarlie, Scott Stanford
  • Publication number: 20230395074
    Abstract: Set forth is a motorized computing device that selectively navigates to a user according content of a spoken utterance directed at the motorized computing device. The motorized computing device can modify operations of one or more motors of the motorized computing device according to whether the user provided a spoken utterance while the one or more motors are operating. The motorized computing device can render content according to interactions between the user and an automated assistant. For instance, when automated assistant is requested to provide graphical content for the user, the motorized computing device can navigate to the user in order to present the content the user. However, in some implementations, when the user requests audio content, the motorized computing device can bypass navigating to the user when the motorized computing device is within a distance from the user for audibly rendering the audio content.
    Type: Application
    Filed: August 14, 2023
    Publication date: December 7, 2023
    Inventors: Scott Stanford, Keun-Young Park, Vitalii Tomkiv, Hideaki Matsui, Angad Sidhu
  • Patent number: 11727931
    Abstract: Set forth is a motorized computing device that selectively navigates to a user according content of a spoken utterance directed at the motorized computing device. The motorized computing device can modify operations of one or more motors of the motorized computing device according to whether the user provided a spoken utterance while the one or more motors are operating. The motorized computing device can render content according to interactions between the user and an automated assistant. For instance, when automated assistant is requested to provide graphical content for the user, the motorized computing device can navigate to the user in order to present the content the user. However, in some implementations, when the user requests audio content, the motorized computing device can bypass navigating to the user when the motorized computing device is within a distance from the user for audibly rendering the audio content.
    Type: Grant
    Filed: November 1, 2021
    Date of Patent: August 15, 2023
    Assignee: GOOGLE LLC
    Inventors: Scott Stanford, Keun-Young Park, Vitalii Tomkiv, Hideaki Matsui, Angad Sidhu
  • Publication number: 20230191594
    Abstract: A tendon-driven robotic gripper is disclosed for performing fingertip and enveloping grasps. One embodiment comprises two fingers, each with two links, and is actuated using a single active tendon. During unobstructed closing, the distal links remain parallel, creating exact fingertip grasps. Conversely, if the proximal links are stopped by contact with an object, the distal links start flexing, creating a stable enveloping grasp. The route of the active tendon and the parameters of the springs providing passive extension forces are optimized in order to achieve this behavior. An additional passive tendon is disclosed that may be used as a constraint preventing the gripper from entering undesirable parts of the joint workspace. A method for optimizing the dimensions of the links in order to achieve enveloping grasps of a large range of objects is disclosed and applied to a set of common household objects.
    Type: Application
    Filed: February 13, 2023
    Publication date: June 22, 2023
    Applicant: Willow Garage, LLC
    Inventors: Matei Ciocarlie, Scott Stanford
  • Patent number: 11613005
    Abstract: A tendon-driven robotic gripper is disclosed for performing fingertip and enveloping grasps. One embodiment comprises two fingers, each with two links, and is actuated using a single active tendon. During unobstructed closing, the distal links remain parallel, creating exact fingertip grasps. Conversely, if the proximal links are stopped by contact with an object, the distal links start flexing, creating a stable enveloping grasp. The route of the active tendon and the parameters of the springs providing passive extension forces are optimized in order to achieve this behavior. An additional passive tendon is disclosed that may be used as a constraint preventing the gripper from entering undesirable parts of the joint workspace. A method for optimizing the dimensions of the links in order to achieve enveloping grasps of a large range of objects is disclosed and applied to a set of common household objects.
    Type: Grant
    Filed: March 16, 2021
    Date of Patent: March 28, 2023
    Assignee: Willow Garage, LLC
    Inventors: Matei Ciocarlie, Scott Stanford
  • Publication number: 20220165266
    Abstract: Set forth is a motorized computing device that selectively navigates to a user according content of a spoken utterance directed at the motorized computing device. The motorized computing device can modify operations of one or more motors of the motorized computing device according to whether the user provided a spoken utterance while the one or more motors are operating. The motorized computing device can render content according to interactions between the user and an automated assistant. For instance, when automated assistant is requested to provide graphical content for the user, the motorized computing device can navigate to the user in order to present the content the user. However, in some implementations, when the user requests audio content, the motorized computing device can bypass navigating to the user when the motorized computing device is within a distance from the user for audibly rendering the audio content.
    Type: Application
    Filed: November 1, 2021
    Publication date: May 26, 2022
    Inventors: Scott Stanford, Keun-Young Park, Vitalii Tomkiv, Hideaki Matsui, Angad Sidhu
  • Patent number: 11164582
    Abstract: Set forth is a motorized computing device that selectively navigates to a user according content of a spoken utterance directed at the motorized computing device. The motorized computing device can modify operations of one or more motors of the motorized computing device according to whether the user provided a spoken utterance while the one or more motors are operating. The motorized computing device can render content according to interactions between the user and an automated assistant. For instance, when automated assistant is requested to provide graphical content for the user, the motorized computing device can navigate to the user in order to present the content the user. However, in some implementations, when the user requests audio content, the motorized computing device can bypass navigating to the user when the motorized computing device is within a distance from the user for audibly rendering the audio content.
    Type: Grant
    Filed: April 29, 2019
    Date of Patent: November 2, 2021
    Assignee: GOOGLE LLC
    Inventors: Scott Stanford, Keun-Young Park, Vitalii Tomkiv, Hideaki Matsui, Angad Sidhu
  • Publication number: 20210291360
    Abstract: A tendon-driven robotic gripper is disclosed for performing fingertip and enveloping grasps. One embodiment comprises two fingers, each with two links, and is actuated using a single active tendon. During unobstructed closing, the distal links remain parallel, creating exact fingertip grasps. Conversely, if the proximal links are stopped by contact with an object, the distal links start flexing, creating a stable enveloping grasp. The route of the active tendon and the parameters of the springs providing passive extension forces are optimized in order to achieve this behavior. An additional passive tendon is disclosed that may be used as a constraint preventing the gripper from entering undesirable parts of the joint workspace. A method for optimizing the dimensions of the links in order to achieve enveloping grasps of a large range of objects is disclosed and applied to a set of common household objects.
    Type: Application
    Filed: March 16, 2021
    Publication date: September 23, 2021
    Applicant: Willow Garage, LLC
    Inventors: Matei Ciocarlie, Scott Stanford
  • Patent number: 10987801
    Abstract: A tendon-driven robotic gripper is disclosed for performing fingertip and enveloping grasps. One embodiment comprises two fingers, each with two links, and is actuated using a single active tendon. During unobstructed closing, the distal links remain parallel, creating exact fingertip grasps. Conversely, if the proximal links are stopped by contact with an object, the distal links start flexing, creating a stable enveloping grasp. The route of the active tendon and the parameters of the springs providing passive extension forces are optimized in order to achieve this behavior. An additional passive tendon is disclosed that may be used as a constraint preventing the gripper from entering undesirable parts of the joint workspace. A method for optimizing the dimensions of the links in order to achieve enveloping grasps of a large range of objects is disclosed and applied to a set of common household objects.
    Type: Grant
    Filed: February 25, 2020
    Date of Patent: April 27, 2021
    Assignee: Willow Garage, LLC
    Inventors: Matei Ciocarlie, Scott Stanford
  • Publication number: 20200342864
    Abstract: Set forth is a motorized computing device that selectively navigates to a user according content of a spoken utterance directed at the motorized computing device. The motorized computing device can modify operations of one or more motors of the motorized computing device according to whether the user provided a spoken utterance while the one or more motors are operating. The motorized computing device can render content according to interactions between the user and an automated assistant. For instance, when automated assistant is requested to provide graphical content for the user, the motorized computing device can navigate to the user in order to present the content the user. However, in some implementations, when the user requests audio content, the motorized computing device can bypass navigating to the user when the motorized computing device is within a distance from the user for audibly rendering the audio content.
    Type: Application
    Filed: April 29, 2019
    Publication date: October 29, 2020
    Inventors: Scott Stanford, Keun-Young Park, Vitalii Tomkiv, Hideaki Matsui, Angad Sidhu
  • Publication number: 20200189096
    Abstract: A tendon-driven robotic gripper is disclosed for performing fingertip and enveloping grasps. One embodiment comprises two fingers, each with two links, and is actuated using a single active tendon. During unobstructed closing, the distal links remain parallel, creating exact fingertip grasps. Conversely, if the proximal links are stopped by contact with an object, the distal links start flexing, creating a stable enveloping grasp. The route of the active tendon and the parameters of the springs providing passive extension forces are optimized in order to achieve this behavior. An additional passive tendon is disclosed that may be used as a constraint preventing the gripper from entering undesirable parts of the joint workspace. A method for optimizing the dimensions of the links in order to achieve enveloping grasps of a large range of objects is disclosed and applied to a set of common household objects.
    Type: Application
    Filed: February 25, 2020
    Publication date: June 18, 2020
    Applicant: Willow Garage, LLC
    Inventors: Matei Ciocarlie, Scott Stanford
  • Publication number: 20190291269
    Abstract: A tendon-driven robotic gripper is disclosed for performing fingertip and enveloping grasps. One embodiment comprises two fingers, each with two links, and is actuated using a single active tendon. During unobstructed closing, the distal links remain parallel, creating exact fingertip grasps. Conversely, if the proximal links are stopped by contact with an object, the distal links start flexing, creating a stable enveloping grasp. The route of the active tendon and the parameters of the springs providing passive extension forces are optimized in order to achieve this behavior. An additional passive tendon is disclosed that may be used as a constraint preventing the gripper from entering undesirable parts of the joint workspace. A method for optimizing the dimensions of the links in order to achieve enveloping grasps of a large range of objects is disclosed and applied to a set of common household objects.
    Type: Application
    Filed: May 16, 2019
    Publication date: September 26, 2019
    Applicant: Willow Garage, Inc.
    Inventors: Matei Ciocarlie, Scott Stanford
  • Publication number: 20180361572
    Abstract: A tendon-driven robotic gripper is disclosed for performing fingertip and enveloping grasps. One embodiment comprises two fingers, each with two links, and is actuated using a single active tendon. During unobstructed closing, the distal links remain parallel, creating exact fingertip grasps. Conversely, if the proximal links are stopped by contact with an object, the distal links start flexing, creating a stable enveloping grasp. The route of the active tendon and the parameters of the springs providing passive extension forces are optimized in order to achieve this behavior. An additional passive tendon is disclosed that may be used as a constraint preventing the gripper from entering undesirable parts of the joint workspace. A method for optimizing the dimensions of the links in order to achieve enveloping grasps of a large range of objects is disclosed and applied to a set of common household objects.
    Type: Application
    Filed: August 9, 2018
    Publication date: December 20, 2018
    Applicant: Willow Garage, Inc.
    Inventors: Matei Ciocarlie, Scott Stanford
  • Patent number: 10150218
    Abstract: A robotic device is provided. The robotic device includes a first detachable digit, including a first connector piece. The robotic device also includes a digit mounting apparatus, including a first pivot joint and a second connector piece coupled to the first pivot joint, where the second connector piece is configured to mate with the first connector piece of the first detachable digit. The robotic device also includes an actuator configured to pivot the first pivot joint about a first axis to cause the second connector piece of the digit mounting apparatus to mate with the first connector piece of the first detachable digit to attach the first detachable digit to the digit mounting apparatus.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: December 11, 2018
    Assignee: X Development LLC
    Inventors: Marc Strauss, David Youmans, Scott Stanford
  • Publication number: 20180117776
    Abstract: A robotic device is provided. The robotic device includes a first detachable digit, including a first connector piece. The robotic device also includes a digit mounting apparatus, including a first pivot joint and a second connector piece coupled to the first pivot joint, where the second connector piece is configured to mate with the first connector piece of the first detachable digit. The robotic device also includes an actuator configured to pivot the first pivot joint about a first axis to cause the second connector piece of the digit mounting apparatus to mate with the first connector piece of the first detachable digit to attach the first detachable digit to the digit mounting apparatus.
    Type: Application
    Filed: December 22, 2017
    Publication date: May 3, 2018
    Inventors: Marc Strauss, David Youmans, Scott Stanford
  • Publication number: 20180079075
    Abstract: A tendon-driven robotic gripper is disclosed for performing fingertip and enveloping grasps. One embodiment comprises two fingers, each with two links, and is actuated using a single active tendon. During unobstructed closing, the distal links remain parallel, creating exact fingertip grasps. Conversely, if the proximal links are stopped by contact with an object, the distal links start flexing, creating a stable enveloping grasp. The route of the active tendon and the parameters of the springs providing passive extension forces are optimized in order to achieve this behavior. An additional passive tendon is disclosed that may be used as a constraint preventing the gripper from entering undesirable parts of the joint workspace. A method for optimizing the dimensions of the links in order to achieve enveloping grasps of a large range of objects is disclosed and applied to a set of common household objects.
    Type: Application
    Filed: November 30, 2017
    Publication date: March 22, 2018
    Applicant: Willow Garage, Inc.
    Inventors: Matei Ciocarlie, Scott Stanford
  • Patent number: 9855663
    Abstract: A robotic device is provided. The robotic device includes a first detachable digit, including a first connector piece. The robotic device also includes a digit mounting apparatus, including a first pivot joint and a second connector piece coupled to the first pivot joint, where the second connector piece is configured to mate with the first connector piece of the first detachable digit. The robotic device also includes an actuator configured to pivot the first pivot joint about a first axis to cause the second connector piece of the digit mounting apparatus to mate with the first connector piece of the first detachable digit to attach the first detachable digit to the digit mounting apparatus.
    Type: Grant
    Filed: June 17, 2016
    Date of Patent: January 2, 2018
    Assignee: X Development LLC
    Inventors: Marc Strauss, David Youmans, Scott Stanford
  • Publication number: 20170225328
    Abstract: A tendon-driven robotic gripper is disclosed for performing fingertip and enveloping grasps. One embodiment comprises two fingers, each with two links, and is actuated using a single active tendon. During unobstructed closing, the distal links remain parallel, creating exact fingertip grasps. Conversely, if the proximal links are stopped by contact with an object, the distal links start flexing, creating a stable enveloping grasp. The route of the active tendon and the parameters of the springs providing passive extension forces are optimized in order to achieve this behavior. An additional passive tendon is disclosed that may be used as a constraint preventing the gripper from entering undesirable parts of the joint workspace. A method for optimizing the dimensions of the links in order to achieve enveloping grasps of a large range of objects is disclosed and applied to a set of common household objects.
    Type: Application
    Filed: April 26, 2017
    Publication date: August 10, 2017
    Applicant: Willow Garage, Inc.
    Inventors: Matei Ciocarlie, Scott Stanford
  • Publication number: 20160193734
    Abstract: A tendon-driven robotic gripper is disclosed for performing fingertip and enveloping grasps. One embodiment comprises two fingers, each with two links, and is actuated using a single active tendon. During unobstructed closing, the distal links remain parallel, creating exact fingertip grasps. Conversely, if the proximal links are stopped by contact with an object, the distal links start flexing, creating a stable enveloping grasp. The route of the active tendon and the parameters of the springs providing passive extension forces are optimized in order to achieve this behavior. An additional passive tendon is disclosed that may be used as a constraint preventing the gripper from entering undesirable parts of the joint workspace. A method for optimizing the dimensions of the links in order to achieve enveloping grasps of a large range of objects is disclosed and applied to a set of common household objects.
    Type: Application
    Filed: March 14, 2016
    Publication date: July 7, 2016
    Applicant: Willow Garage, Inc.
    Inventors: Matei Ciocarlie, Scott Stanford
  • Patent number: 9314932
    Abstract: A tendon-driven robotic gripper is disclosed for performing fingertip and enveloping grasps. One embodiment comprises two fingers, each with two links, and is actuated using a single active tendon. During unobstructed closing, the distal links remain parallel, creating exact fingertip grasps. Conversely, if the proximal links are stopped by contact with an object, the distal links start flexing, creating a stable enveloping grasp. The route of the active tendon and the parameters of the springs providing passive extension forces are optimized in order to achieve this behavior. An additional passive tendon is disclosed that may be used as a constraint preventing the gripper from entering undesirable parts of the joint workspace. A method for optimizing the dimensions of the links in order to achieve enveloping grasps of a large range of objects is disclosed and applied to a set of common household objects.
    Type: Grant
    Filed: February 10, 2015
    Date of Patent: April 19, 2016
    Assignee: Willow Garage, Inc.
    Inventors: Matei Ciocarlie, Scott Stanford