Patents by Inventor Scott Stone

Scott Stone has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240109169
    Abstract: A system and method and fastening tool that utilizes ultrasonic or acoustic energy and a horn that focuses the energy into the fastener at a predetermined location in order to facilitate tightening or loosening the fastener.
    Type: Application
    Filed: December 5, 2023
    Publication date: April 4, 2024
    Applicant: NEXTGEN AEROSPACE TECHNOLOGIES, LLC
    Inventors: Gary Lee Ward, David Scott Diwinsky, David Joseph Stone, Marc Alan Metz, Tom Lawrence Clutter
  • Publication number: 20240104466
    Abstract: A graphical workflow definition and management tool enables administrators and other authorized users to implement a workflow process that can be used to evaluate project submissions or other applications that require step-by-step process completion. The steps required to navigate through the workflow are first defined. Inputs, outputs, and actions, including conditional criteria, can be specified for the steps. The flow of control between the individual steps in the workflow is mapped out; changes to the status of a project submission can cause a submission to migrate to a succeeding step in the workflow. A “sandbox” testing environment allows changes to any aspect of the workflow to be safely evaluated without affecting live data. Conflicts between production and test workflows are identified and intelligently resolved.
    Type: Application
    Filed: December 8, 2023
    Publication date: March 28, 2024
    Inventors: Jeffrey Ressler, Scott Tewel, Robert Orleth, Jeremy Stone
  • Patent number: 11919805
    Abstract: A silica-based substrate includes a glass phase and a dispersed phase having carbon, such that the silica-based substrate has a thickness of at least 10 gm. Also disclosed is a method of forming a silica-based substrate, the method including contacting a porous silica soot preform with an organic solution having at least one hydrocarbon precursor to form a doped silica soot preform and heating the doped silica soot preform in an inert atmosphere to form the silica-based substrate.
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: March 5, 2024
    Assignee: CORNING INCORPORATED
    Inventors: Yunfeng Gu, Nicolas LeBlond, Ming-Jun Li, Jeffery Scott Stone, Haitao Zhang
  • Publication number: 20240065836
    Abstract: Components for valve treatment systems are disclosed. Valve treatment systems can include a delivery system for an implantable device. The delivery system can include one or more of clasp control components slidably disposed on a catheter handle, a control element for opening and closing the implantable device, a catheter assembly with features to reduce friction with another catheter assembly, grips for attaching catheter assemblies to clamps, catheter assemblies with features that stiffen or provide variable stiffness, and catheter assemblies with one or more steering control lumens incorporated into a reinforcement layer.
    Type: Application
    Filed: October 27, 2023
    Publication date: February 29, 2024
    Inventors: Michael J. Popp, Nicolas Schleiger, Kevin Gantz, George Lee Matlock, Aric Daniel Stone, Eric Robert Dixon, Charles Henry Bloodworth, IV, Gregory Scott Tyler, II, Asher L. Metchik, Robert Bowes, Waina Michelle Chu, Zachary James Zira, Steven Park
  • Patent number: 11643354
    Abstract: According to embodiments, a method of making a microstructured glass article includes bundling M bare optical fibers in a fiber bundle, wherein M is an integer greater than 100. Thereafter, the fiber bundle may be inserted in a cavity of a soot preform. The soot preform may have a density of less than or equal to 1.5 g/cm3 and comprise silica-based glass soot. The soot preform and inserted fiber bundle may then be consolidated to form a microstructured glass article preform. The microstructured glass article preform may then be drawn into the microstructured glass article comprising M core elements embedded in a cladding matrix.
    Type: Grant
    Filed: June 24, 2022
    Date of Patent: May 9, 2023
    Assignee: CORNING INCORPORATED
    Inventors: Ming-Jun Li, Jeffery Scott Stone
  • Publication number: 20230040327
    Abstract: An anti-resonant hollow core optical fiber preform that includes an outer cladding, a plurality of structural tubes, and a central support tube. The outer cladding has a length, a central longitudinal axis, and a hollow interior. The plurality of structural tubes are disposed within the hollow interior of the outer cladding, the plurality of structural tubes each having a length that extends the length of the outer cladding. And the central support tube is disposed within the hollow interior of the outer cladding such that the plurality of structural tubes are disposed radially outward of the central support tube, the central support tube having a length that extends along the central longitudinal axis of the outer cladding. Furthermore, the length of the central support tube is less than the length of the outer cladding.
    Type: Application
    Filed: July 28, 2022
    Publication date: February 9, 2023
    Inventors: Richard Michael Fiacco, Ming-Jun Li, Stephan Lvovich Logunov, Jeffery Scott Stone, Matthew Artus Tuggle
  • Patent number: 11554978
    Abstract: A method for forming an optical glass preform from a soot preform is provided. The method includes forming a soot preform, placing the soot preform in a furnace, and applying a vacuum through a centerline hole of the soot preform.
    Type: Grant
    Filed: November 18, 2014
    Date of Patent: January 17, 2023
    Assignee: Corning Incorporated
    Inventors: Dana Craig Bookbinder, Richard Michael Fiacco, Ming-Jun Li, Jeffery Scott Stone, Pushkar Tandon
  • Patent number: 11500149
    Abstract: An optical fiber can include a core comprising silica co-doped with nitrogen and chlorine and an outer cladding surrounding the core. In some aspects, the core can be characterized by an annealing temperature of less than or equal to about 1150° C. and/or the core can include a relative refractive index ?core in a range of from about 0.15% to about 0.45%.
    Type: Grant
    Filed: April 21, 2021
    Date of Patent: November 15, 2022
    Assignee: Corning Incorporated
    Inventors: Richard Michael Fiacco, Kenneth Edward Hrdina, Ming-Jun Li, Jeffery Scott Stone, Haitao Zhang
  • Publication number: 20220340473
    Abstract: According to embodiments, a method of making a microstructured glass article includes bundling M bare optical fibers in a fiber bundle, wherein M is an integer greater than 100. Thereafter, the fiber bundle may be inserted in a cavity of a soot preform. The soot preform may have a density of less than or equal to 1.5 g/cm3 and comprise silica-based glass soot. The soot preform and inserted fiber bundle may then be consolidated to form a microstructured glass article preform. The microstructured glass article preform may then be drawn into the microstructured glass article comprising M core elements embedded in a cladding matrix.
    Type: Application
    Filed: June 24, 2022
    Publication date: October 27, 2022
    Inventors: Ming-Jun Li, Jeffery Scott Stone
  • Patent number: 11419494
    Abstract: Provided is a portable, hand-held, self-powered, self-calibrated, easy-to-use “iCOBRA” system, a neural/neurological assessment tool for both operational decision-making in military, aerospace, sports, and other high-performance settings, and to assist in diagnostics in medical practice. The system harnesses multimodal 3D imaging technologies for robust, calibration free, head and eye tracking to allow for visual, vestibular, and oculomotor assessment of human neural health and performance.
    Type: Grant
    Filed: September 23, 2019
    Date of Patent: August 23, 2022
    Assignee: United States of America as Represented by the Administrator of NASA
    Inventors: Leland Scott Stone, Dorion Bryce Liston, Bernard Dov Adelstein, Mark Richard Anderson, Kenji Hiroshi Kato
  • Patent number: 11401196
    Abstract: According to embodiments, a method of making a micro structured glass article 100 includes bundling M bare optical fibers in a fiber bundle, wherein M is an integer greater than 100. Thereafter, the fiber bundle may be inserted in a cavity of a soot preform. The soot preform may have a density of less than or equal to 1.5 g/cm3 and comprise silica-based glass soot. The soot preform and inserted fiber bundle may then be consolidated to form a microstructured glass article preform. The micro structured glass article preform may then be drawn into the microstructured glass article 100 comprising M core elements 102 embedded in a cladding matrix 104.
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: August 2, 2022
    Assignee: Corning Incorporated
    Inventors: Ming-Jun Li, Jeffery Scott Stone
  • Patent number: 11327223
    Abstract: A multimode optical fiber having a core region. The core region includes silica, has an outer radius r1, and has a maximum relative refractive index of about 1.5% or less. Additionally, the multimode optical fiber is configured to have an effective bandwidth of about 4.7 GHz-Km or greater for an excited portion of the core region that has a diameter greater than 50 microns, the effective bandwidth being at a wavelength that is within a range of between about 800 and about 1370 nm.
    Type: Grant
    Filed: March 29, 2021
    Date of Patent: May 10, 2022
    Assignee: Corning Incorporated
    Inventors: Xin Chen, Kangmei Li, Ming-Jun Li, Anping Liu, Simit Mayank Patel, Jeffery Scott Stone
  • Patent number: 11243348
    Abstract: A high-density optical fiber ribbon is formed by two or more cladding-strengthened glass optical fibers each having an outer surface and that do not individually include a protective polymer coating. A common protective coating substantially surrounds the outer surfaces of the two or more cladding-strengthened glass optical fibers so that the common protective coating is common to the two or more cladding-strengthened glass optical fibers. A fiber ribbon cable is formed by adding a cover assembly to the fiber ribbon. A fiber ribbon interconnect is formed adding one or more optical connectors to the fiber ribbon or fiber ribbon cable. Optical data transmission systems that employ the fiber ribbon to optically connect to a photonic device are also disclosed. Methods of forming the cladding-strengthened glass optical fibers and the high-density optical fiber ribbons are also disclosed.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: February 8, 2022
    Assignee: Corning Incorporated
    Inventors: Philip Simon Brown, Matthew Ryan Drake, Richard Michael Fiacco, Mandakini Kanungo, Ming-Jun Li, Jeffery Scott Stone, Qi Wu, Haitao Zhang
  • Publication number: 20210349257
    Abstract: An optical fiber can include a core comprising silica co-doped with nitrogen and chlorine and an outer cladding surrounding the core. In some aspects, the core can be characterized by an annealing temperature of less than or equal to about 1150° C. and/or the core can include a relative refractive index ?core in a range of from about 0.15% to about 0.45%.
    Type: Application
    Filed: April 21, 2021
    Publication date: November 11, 2021
    Inventors: Richard Michael Fiacco, Kenneth Edward Hrdina, Ming-Jun Li, Jeffery Scott Stone, Haitao Zhang
  • Patent number: 11156770
    Abstract: Multimode optical fibers are disclosed herein. In some embodiment disclosed herein, a multimode optical fiber having a bandwidth of greater than 2 GHz·km includes: a glass matrix having a front endface, a back endface, a length (L), a refractive index n20 and a central axis (AC); and a plurality of cores arranged within the glass matrix, wherein the plurality of cores run generally parallel to the central axis between the front and back endfaces and having respective refractive indices n50, wherein n50>n20, wherein the glass matrix serves as a common cladding for the plurality of cores so that each core and the common cladding define a waveguide, wherein each core is a single mode at an operating wavelength; and wherein any two cores have an center-to-center spacing s of 3 ?m to 20 ?m and a coupling coefficient of greater than 10 m?1 but less than 200 m?1.
    Type: Grant
    Filed: March 25, 2020
    Date of Patent: October 26, 2021
    Assignee: Corning Incorporated
    Inventors: Ming-Jun Li, Jeffery Scott Stone
  • Publication number: 20210325599
    Abstract: A multimode optical fiber having a core region. The core region includes silica, has an outer radius r1, and has a maximum relative refractive index of about 1.5% or less. Additionally, the multimode optical fiber is configured to have an effective bandwidth of about 4.7 GHz-Km or greater for an excited portion of the core region that has a diameter greater than 50 microns, the effective bandwidth being at a wavelength that is within a range of between about 800 and about 1370 nm.
    Type: Application
    Filed: March 29, 2021
    Publication date: October 21, 2021
    Inventors: Xin Chen, Kangmei Li, Ming-Jun Li, Anping Liu, Simit Mayank Patel, Jeffery Scott Stone
  • Publication number: 20210214267
    Abstract: A silica-based substrate includes a glass phase and a dispersed phase having carbon, such that the silica-based substrate has a thickness of at least 10 gm. Also disclosed is a method of forming a silica-based substrate, the method including contacting a porous silica soot preform with an organic solution having at least one hydrocarbon precursor to form a doped silica soot preform and heating the doped silica soot preform in an inert atmosphere to form the silica-based substrate.
    Type: Application
    Filed: May 31, 2019
    Publication date: July 15, 2021
    Inventors: Yunfeng Gu, Nicolas LeBlond, Ming-Jun Li, Jeffery Scott Stone, Haitao Zhang
  • Publication number: 20210214265
    Abstract: According to embodiments, a method of making a micro structured glass article 100 includes bundling M bare optical fibers in a fiber bundle, wherein M is an integer greater than 100. Thereafter, the fiber bundle may be inserted in a cavity of a soot preform. The soot preform may have a density of less than or equal to 1.5 g/cm3 and comprise silica-based glass soot. The soot preform and inserted fiber bundle may then be consolidated to form a microstructured glass article preform. The micro structured glass article preform may then be drawn into the microstructured glass article 100 comprising M core elements 102 embedded in a cladding matrix 104.
    Type: Application
    Filed: May 31, 2019
    Publication date: July 15, 2021
    Inventors: Ming-Jun Li, Jeffery Scott Stone
  • Publication number: 20210214266
    Abstract: Disclosed herein are methods for forming an optical fiber preform using organic silica and germania precursors. The method includes depositing soot composed of germanium dioxide and silica on a substrate, removing the substrate, conducting a dehydration step and one or more heating steps under an oxygen-containing atmosphere to form the preform. Also disclosed are optical fibers drawn from the preforms produced herein.
    Type: Application
    Filed: January 11, 2021
    Publication date: July 15, 2021
    Inventors: Curtis Robert Fekety, Richard Michael Fiacco, Ming-Jun Li, Craig Daniel Nie, Jeffery Scott Stone, Pushkar Tandon
  • Patent number: 10921512
    Abstract: Methods of manufacturing multi-mode optical fiber, and multi-mode optical fiber produced thereby, are disclosed. According to embodiments, a method for forming an optical fiber may include heating a multi-mode optical fiber preform and applying a draw tension to a root of the multi-mode optical fiber preform on a long axis of the multi-mode optical fiber preform thereby drawing a multi-mode optical fiber from the root of the multi-mode optical fiber preform. The draw tension may be modulated while the multi-mode optical fiber is drawn from the root of the multi-mode optical fiber preform. Modulating the draw tension introduces stress perturbations in the multi-mode optical fiber and corresponding refractive index perturbations in a core of the multi-mode optical fiber.
    Type: Grant
    Filed: September 25, 2018
    Date of Patent: February 16, 2021
    Assignee: Corning Incorporated
    Inventors: Dana Craig Bookbinder, Curtis Richard Cowles, Richard Michael Fiacco, Ming-Jun Li, Jason Roy Pace, Jeffery Scott Stone