Patents by Inventor Scott T. Mazar

Scott T. Mazar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8792983
    Abstract: A method comprises connecting at least one portion of a far-field radio-frequency (RF) first telemetry circuit in an implantable medical device to an energy source through a power connection module, detecting information included in a first predetermined wireless signal, changing a conductivity state of the power connection module when the information in the first predetermined wireless signal is detected to couple power to the at least one portion of the first telemetry circuit, detecting a second predetermined wireless signal, and changing a conductivity state of the power connection module to decouple power to the at least one portion of the first telemetry circuit when the second predetermined wireless signal is detected and the first telemetry circuit enters an idle state.
    Type: Grant
    Filed: September 6, 2013
    Date of Patent: July 29, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Jeffrey A. Von Arx, David J. Yonce, Scott T. Mazar, Karen M. Kramer, Thomas J. Harris
  • Patent number: 8755899
    Abstract: An apparatus and method for enabling far-field radio-frequency communications with an implantable medical device in which an antenna is embedded within a dielectric compartment of the device. A helical antenna may be employed to save space while still permitting far-field telemetry over a desired range of frequencies.
    Type: Grant
    Filed: January 26, 2009
    Date of Patent: June 17, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Jeffrey A. Von Arx, William R. Mass, Scott T. Mazar, Mark D. Amundson
  • Patent number: 8744589
    Abstract: A method of stimulating a nerve of a patient. The method may include positioning a first electrode set on a first portion of the nerve, wherein the first portion of the nerve innervates a first upper airway muscle of the patient. The method may include positioning a second electrode set on a second portion of the nerve, wherein the second portion of the nerve innervates a second upper airway muscle of the patient. The method may further include alternatively delivering an electrical stimulation to the first electrode set and to the second electrode set.
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: June 3, 2014
    Assignee: Cyberonics, Inc.
    Inventors: Stephen L. Bolea, Thomas B. Hoegh, Bruce J. Persson, Robert E. Atkinson, Scott T. Mazar
  • Patent number: 8718752
    Abstract: Systems and methods of detecting an impending cardiac decompensation of a patient measure an electrocardiogram signal of the patient. An incidence of cardiac arrhythmias is determined from the electrocardiogram signal. A risk of impending decompensation is determined in response to the incidence of cardiac arrhythmias. In many embodiments, the impending decompensation can be detected early enough to avoid, or at least delay, the impending decompensation, such that patient trauma and/or expensive ICU care can be avoided. Although embodiments make specific reference to monitoring electrocardiogram and other physiological signals with an adherent patch, the system methods and devices are applicable to many applications in which physiological monitoring is used, for example wireless physiological monitoring with implanted sensors for extended periods.
    Type: Grant
    Filed: March 11, 2009
    Date of Patent: May 6, 2014
    Assignee: Corventis, Inc.
    Inventors: Imad Libbus, Yatheendhar D. Manicka, Badri Amurthur, Scott T. Mazar
  • Patent number: 8718783
    Abstract: A method of stimulating a hypogossal nerve including chronically implanting a nerve cuff electrode on a portion of the hypoglossal nerve. The method may further include sensing a signal corresponding to respiration and detecting expiratory onset from the sensed signal. Moreover, the method may include delivering a stimulus to the portion of the hypoglossal nerve via the nerve cuff electrode, wherein the stimulus is delivered as a function of the detected expiratory onset.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: May 6, 2014
    Assignee: Cyberonics, Inc.
    Inventors: Stephen L. Bolea, Thomas B. Hoegh, Bruce J. Persson, Robert E. Atkinson, Scott T. Mazar
  • Patent number: 8700172
    Abstract: A medical device is capable of utilizing a pervasive wireless communications network, such as a digital wireless telephone network, personal communication services network or pager network, to directly communicate with a host computer without the need for a repeater device. The device includes a sensor capable of measuring a body characteristic, such as temperature or electrical cardiac activity, and generates clinical data describing the measurement. The device also includes a wireless transmitter/receiver unit capable of establishing a communications link with a host computer over the long-range wireless network. The wireless transmitter/receiver unit is capable of delivering the measured clinical data to the host computer over the wireless network. The wireless transmitter/receiver unit can also periodically deliver status information regarding the operation of the implantable device to the host computer.
    Type: Grant
    Filed: May 6, 2008
    Date of Patent: April 15, 2014
    Assignee: Cardiac Pacemakers
    Inventors: Scott T. Mazar, Yatheendhar D. Manicka
  • Patent number: 8694116
    Abstract: An apparatus and method for adjusting the performance of an implanted device based on data including contextual information. Contextual information, including operational and performance data concerning the implanted device as well as the patient with the implanted device, is stored by a portable electronic device. In one embodiment, the portable electronic device is adapted for battery operation and includes a personal digital assistant (PDA). The portable electronic device is adapted for use as an interface to conduct wireless communications with the implanted device. In one embodiment, the portable electronic device interfaces with a clinical programmer for use by a physician.
    Type: Grant
    Filed: April 16, 2012
    Date of Patent: April 8, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Bruce H. KenKnight, Eric G. Lovett, Robert J. Sweeney, Scott T. Mazar, Yatheendhar D. Manicka
  • Patent number: 8639354
    Abstract: In an embodiment, a lead system includes a cuff electrode to secure to a nerve, a first lead portion defining a longitudinal axis, and a second lead portion. An anchor may be between the first lead portion and the second lead portion to secure to non-nerve structure. A connector may extend from the second lead portion to connect to a pulse generator. Electrode elements are spaced apart along the cuff body. The cuff electrode may include a first resilient arcuate-shaped portion extending in a first circumferential direction and having a first arc length; and a second resilient arcuate-shaped portion integrally formed with the first arcuate-shaped portion, extending in a second circumferential direction, and having a second arm length greater that the first arc length. The second arcuate-shaped portion overlaps the first arcuate-shaped portion, The first and second arcuate-shaped portions define a lumen having a substantially re-closable opening.
    Type: Grant
    Filed: October 3, 2011
    Date of Patent: January 28, 2014
    Assignee: Cyberonics, Inc.
    Inventors: Stephen L. Bolea, Thomas B. Hoegh, Bruce J. Persson, Robert E. Atkinson, Scott T. Mazar
  • Patent number: 8628471
    Abstract: Systems and Methods for predicting patient health and patient relative well-being within a patient management system are disclosed. A preferred embodiment utilizes an implantable medical device comprising an analysis component and a sensing component further comprising a three-dimensional accelerometer, a transthoracic impedance sensor, a cardio-activity sensor, an oxygen saturation sensor and a blood glucose sensor. Some embodiments of a system disclosed herein also can be configured as an Advanced Patient Management System that helps better monitor, predict and manage chronic diseases.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: January 14, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Scott T. Mazar, Richard Fogoros, Yatheendhar D. Manicka, Bruce H. KenKnight, Michael J. Pederson
  • Publication number: 20140012341
    Abstract: A method comprises connecting at least one portion of a far-field radio-frequency (RF) first telemetry circuit in an implantable medical device to an energy source through a power connection module, detecting information included in a first predetermined wireless signal, changing a conductivity state of the power connection module when the information in the first predetermined wireless signal is detected to couple power to the at least one portion of the first telemetry circuit, detecting a second predetermined wireless signal, and changing a conductivity state of the power connection module to decouple power to the at least one portion of the first telemetry circuit when the second predetermined wireless signal is detected and the first telemetry circuit enters an idle state.
    Type: Application
    Filed: September 6, 2013
    Publication date: January 9, 2014
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Jeffrey A. Von Arx, David J. Yonce, Scott T. Mazar, Karen M. Kramer, Thomas J. Harris
  • Patent number: 8626304
    Abstract: In one embodiment, a method of treating an upper airway may include delivering a first electrical stimulation to a first portion of a nerve innervating a first upper airway muscle via a plurality of electrodes adjacent the nerve. The method may further include delivering a second electrical stimulation to a second portion of the nerve innervating a second upper airway muscle via the plurality of electrodes, wherein the second muscle is different from the first muscle.
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: January 7, 2014
    Assignee: Cyberonics, Inc.
    Inventors: Stephen L. Bolea, Thomas B. Hoegh, Bruce J. Persson, Robert E. Atkinson, Scott T. Mazar
  • Patent number: 8626296
    Abstract: An implantable medical device includes an acoustic transducer for intra-body communication with another medical device via an acoustic couple. The acoustic transducer includes one or more piezoelectric transducers. In one embodiment, an implantable medical device housing contains a cardiac rhythm management (CRM) device and an acoustic communication circuit. The acoustic communication circuit includes an error detection circuit configured for detecting an error rate associated with demodulated incoming acoustic signals and a frequency selection circuit configured for adjusting a carrier frequency of outbound acoustic signals. The acoustic transducer is electrically connected to the acoustic communication circuit to function as an acoustic coupler and physically fastened to a wall of the implantable housing, directly or via a supporting structure.
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: January 7, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Jeffrey A. Von Arx, Scott T. Mazar, Abhijeet V. Chavan
  • Publication number: 20130271279
    Abstract: A system for relaying data to a repository from a medical device is disclosed. A receiver is configured to receive data from a medical device, where the data can be an indication of a problem with the medical device. A memory is configured to maintain the data once it has been received. A transmission device is configured to send the data to a data repository over a communication medium. A detector is configured to detect conditions of the communication medium that could affect data exchange and send the data based at least in part on the conditions. A processor is configured to send at least a portion of the data based at least in part on a degree of urgency.
    Type: Application
    Filed: April 25, 2013
    Publication date: October 17, 2013
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Scott T. Mazar, Yatheendhar D. Manicka
  • Publication number: 20130253285
    Abstract: An adherent device to monitor a patient for an extended period comprises a breathable tape. The breathable tape comprises a porous material with an adhesive coating to adhere the breathable tape to a skin of the patient. At least one electrode is affixed to the breathable tape and capable of electrically coupling to a skin of the patient. A printed circuit board is connected to the breathable tape to support the printed circuit board with the breathable tape when the tape is adhered to the patient. Electronic components electrically are connected to the printed circuit board and coupled to the at least one electrode to measure physiologic signals of the patient. A breathable cover and/or an electronics housing is disposed over the circuit board and electronic components and connected to at least one of the electronics components, the printed circuit board or the breathable tape.
    Type: Application
    Filed: October 8, 2012
    Publication date: September 26, 2013
    Applicant: CORVENTIS, INC.
    Inventors: Mark J. Bly, Badri Amurthur, Kristofer J. James, Imad Libbus, Yatheendhar D. Manicka, Scott T. Mazar, Jerry S. Wang
  • Patent number: 8538528
    Abstract: A method comprises connecting at least one portion of a far-field radio-frequency (RF) first telemetry circuit in an implantable medical device to an energy source through a power connection module, detecting information included in a first predetermined wireless signal, changing a conductivity state of the power connection module when the information in the first predetermined wireless signal is detected to couple power to the at least one portion of the first telemetry circuit, detecting a second predetermined wireless signal, and changing a conductivity state of the power connection module to decouple power to the at least one portion of the first telemetry circuit when the second predetermined wireless signal is detected and the first telemetry circuit enters an idle state.
    Type: Grant
    Filed: January 8, 2010
    Date of Patent: September 17, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Jeffrey A. Von Arx, David J. Yonce, Scott T. Mazar, Karen M. Kramer, Thomas J. Harris
  • Publication number: 20130237864
    Abstract: A high performance guide wire with a pressure sensor for measuring blood pressure, may utilize a single electrical lead connected to the guide wire. An integrated circuit, powered by the single electrical connection on the guide wire, may interface with the pressure sensor, and may convert pressure information to an encoded signal. The encoded signal may be detectable in the electrical circuit, and can be used to display a pressure waveform as detected by the pressure sensor. For example, when utilized for percutaneous coronary interventions, such a guide wire can provide high quality blood pressure measurements (e.g., for fractional flow reserve), while also possessing excellent steerability and handling characteristics for navigating tortuous anatomy.
    Type: Application
    Filed: November 27, 2012
    Publication date: September 12, 2013
    Inventors: Scott T. Mazar, Peter T. Keith, Jeffrey J. Peters, Scott R. Smith
  • Patent number: 8498712
    Abstract: A method of treating an upper airway of a patient. The method may include displacing a tongue of the patient while observing a response of the upper airway. The method may further include treating the upper airway based on the observed response, wherein treating the upper airway includes positioning an electrode adjacent a nerve innervating an upper airway muscle and delivering an electrical stimulation to the nerve to activate the upper airway muscle.
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: July 30, 2013
    Assignee: Apnex Medical, Inc.
    Inventors: Stephen L. Bolea, Thomas B. Hoegh, Bruce J. Persson, Robert E. Atkinson, Scott T. Mazar
  • Patent number: 8451113
    Abstract: A repeater providing data exchange with a medical device for remote patient care and method thereof are provided. The repeater includes a transmission device configured to send the data over a wireless medium to a data repository and a processing device configured to detect conditions in respect of an associated communication medium that could affect data exchange, where the processing device is configured to send the data based at least in part on the conditions. The processing device is further configured to analyze the data from the medical device to detect a problem with the medical device.
    Type: Grant
    Filed: February 10, 2012
    Date of Patent: May 28, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Scott T. Mazar, Yatheendhar D. Manicka
  • Patent number: 8437689
    Abstract: Systems and methods provide for the selective prevention of data transfer from a medical device to allow the patient to have privacy when desired. These systems and methods provide medical devices that can be instructed to stop recording data and/or transmitting data to external devices and systems. These systems and methods also provide external repeater devices that can be instructed to stop recording data being received, stop forwarding data that is being or has already been received, and/or to stop soliciting data from the medical device. These systems and methods also provide for a blocking device that may be separate from the medical device and repeater to prevent data transfer such as by stopping the recording or transmission of data. The blocking device may be configured to provide a jamming signal to prevent data transmissions from being successfully communicated between the medical device and the repeater.
    Type: Grant
    Filed: September 14, 2011
    Date of Patent: May 7, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventor: Scott T. Mazar
  • Publication number: 20130085347
    Abstract: An adherent device to monitor a patient comprises an adhesive patch to adhere to a skin of the patient. At least four electrodes are connected to the patch and capable of electrically coupling to the patient. Impedance circuitry is coupled to the at least four electrodes to measure a hydration signal of the patient. Electrocardiogram circuitry is coupled to at least two of the at least four electrodes to measure an electrocardiogram signal of the patient. An accelerometer can be mechanically coupled to the adhesive patch to generate a signal in response to at least one of an activity or a position of the patient.
    Type: Application
    Filed: August 29, 2012
    Publication date: April 4, 2013
    Applicant: Corventis, Inc.
    Inventors: Yatheendhar D. Manicka, Badri Amurthur, Mark J. Bly, Kristofer J. James, Imad Libbus, Scott T. Mazar, Jerry S. Wang