Patents by Inventor Scott T. Phillips

Scott T. Phillips has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9664679
    Abstract: Embodiments of the invention provide lateral flow and flow-through bioassay devices based on patterned porous media, methods of making same, and methods of using same. Under one aspect, an assay device includes a porous, hydrophilic medium; a fluid impervious barrier comprising polymerized photoresist, the barrier substantially permeating the thickness of the porous, hydrophilic medium and defining a boundary of an assay region within the porous, hydrophilic medium; and an assay reagent in the assay region.
    Type: Grant
    Filed: November 19, 2015
    Date of Patent: May 30, 2017
    Assignee: President and Fellows of Harvard College
    Inventors: George M. Whitesides, Scott T. Phillips, Andres W. Martinez, Manish J. Butte, Amy Wong, Samuel W. Thomas, Hayat Sindi, Sarah J. Vella, Emanuel Carrilho, Katherine A. Mirica, Yanyan Liu
  • Patent number: 9551706
    Abstract: The ability to levitate, to separate, and to detect changes in density using diamagnetic particles suspended in solutions containing paramagnetic cations using an inhomogeneous magnetic field is described. The major advantages of this separation device are that: i) it is a simple apparatus that does not require electric power (a set of permanent magnets and gravity are sufficient for the diamagnetic separation and collection system to work); ii) it is compatible with simple optical detection (provided that transparent materials are used to fabricate the containers/channels where separation occurs; iii) it is simple to collect the separated particles for further processing; iv) it does not require magnetic labeling of the particles/materials; and v) it is small, portable.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: January 24, 2017
    Assignee: President and Fellows of Harvard College
    Inventors: Scott T. Phillips, George M. Whitesides, Katherine A. Mirica, Emanuel Carrilho, Andres W. Martinez, Sergey S. Shevkoplyas, Phillip W. Snyder, Raquel Perez-Castillejos, Malancha Gupta, Adam Winkleman, Katherine L. Gudiksen
  • Publication number: 20160274105
    Abstract: Embodiments of the invention provide lateral flow and flow-through bioassay devices based on patterned porous media, methods of making same, and methods of using same. Under one aspect, an assay device includes a porous, hydrophilic medium; a fluid impervious barrier comprising polymerized photoresist, the barrier substantially permeating the thickness of the porous, hydrophilic medium and defining a boundary of an assay region within the porous, hydrophilic medium; and an assay reagent in the assay region.
    Type: Application
    Filed: November 19, 2015
    Publication date: September 22, 2016
    Inventors: George M. WHITESIDES, Scott T. PHILLIPS, Andres W. MARTINEZ, Manish J. BUTTE, Amy WONG, Samuel W. THOMAS, Hayat SINDI, Sarah J. VELLA, Emanuel CARRILHO, Katherine A. MIRICA, Yanyan LIU
  • Patent number: 9193988
    Abstract: Embodiments of the invention provide lateral flow and flow-through bioassay devices based on patterned porous media, methods of making same, and methods of using same. Under one aspect, an assay device includes a porous, hydrophilic medium; a fluid impervious barrier comprising polymerized photoresist, the barrier substantially permeating the thickness of the porous, hydrophilic medium and defining a boundary of an assay region within the porous, hydrophilic medium; and an assay reagent in the assay region.
    Type: Grant
    Filed: November 21, 2013
    Date of Patent: November 24, 2015
    Assignee: President and Fellows of Harvard College
    Inventors: George M. Whitesides, Scott T. Phillips, Andres W. Martinez, Manish J. Butte, Amy Wong, Samuel W. Thomas, Hayat Sindi, Sarah J. Vella, Emanuel Carrilho, Katherine A. Mirica, Yanyan Liu
  • Patent number: 8921118
    Abstract: Paper-based microfluidic systems and methods of making the same are described.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: December 30, 2014
    Assignee: President and Fellows of Harvard College
    Inventors: Adam C. Siegel, Scott T. Phillips, Michael D. Dickey, Dorota Rozkiewicz, Benjamin Wiley, George M. Whitesides, Andres W. Martinez
  • Patent number: 8871893
    Abstract: We disclose methods and compositions for preparation of stimuli-responsive plastics that are capable of responding to chemical and/or physical signals in their environment. In one embodiment the plastics consist of patterned mixtures of poly(phthalaldehyde) polymers in which each polymer contains a different end-capping group (also called a “trigger”), responsive to a different signal. Other embodiments use different polymers and different triggers. The plastics may be homogeneous in composition, but each polymer within the plastic is capable of responding to a different signal and depolymerizing once this signal reacts with the trigger. This process of depolymerization enables the plastic to alter its physical features non-linearly to external signals: i.e., the degree of change in physical form is much larger than the intensity of the initial signal.
    Type: Grant
    Filed: May 10, 2011
    Date of Patent: October 28, 2014
    Assignee: The Penn State Research Foundation
    Inventors: Scott T. Phillips, Wanji Seo, Jessica Robbins, Michael Olah, Kyle Schmid, Anthony Michael DiLauro
  • Patent number: 8821810
    Abstract: The disclosure provides low cost, portable three-dimensional devices for performing multiplexed assays. The devices comprise at least two substantially planar layers disposed in parallel planes, wherein one of the layers is movable relative to each other parallel to the planes to permit the establishment of fluid flow communication serially between the two layers.
    Type: Grant
    Filed: February 3, 2011
    Date of Patent: September 2, 2014
    Assignee: President and Fellows of Harvard College
    Inventors: George M. Whitesides, Katherine A. Mirica, Andres W. Martinez, Chao-Min Cheng, Scott T. Phillips, Monica Mascareñas, Xinyu Liu, Xiujun Li
  • Publication number: 20140242623
    Abstract: We disclose methods and compositions for preparation of stimuli-responsive plastics that are capable of responding to chemical and/or physical signals in their environment. In one embodiment the plastics consist of patterned mixtures of poly(phthalaldehyde) polymers in which each polymer contains a different end-capping group (also called a “trigger”), responsive to a different signal. Other embodiments use different polymers and different triggers. The plastics may be homogeneous in composition, but each polymer within the plastic is capable of responding to a different signal and depolymerizing once this signal reacts with the trigger. This process of depolymerization enables the plastic to alter its physical features non-linearly to external signals: i.e., the degree of change in physical form is much larger than the intensity of the initial signal.
    Type: Application
    Filed: May 10, 2011
    Publication date: August 28, 2014
    Inventors: Scott T. Phillips, Wanji Seo, Jessica Robbins, Michael Olah, Kyle Schmid, Anthony Michael DiLauro
  • Publication number: 20140234881
    Abstract: Embodiments of the invention provide lateral flow and flow-through bioassay devices based on patterned porous media, methods of making same, and methods of using same. Under one aspect, an assay device includes a porous, hydrophilic medium; a fluid impervious barrier comprising polymerized photoresist, the barrier substantially permeating the thickness of the porous, hydrophilic medium and defining a boundary of an assay region within the porous, hydrophilic medium; and an assay reagent in the assay region.
    Type: Application
    Filed: November 21, 2013
    Publication date: August 21, 2014
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: George M. WHITESIDES, Scott T. PHILLIPS, Andres W. MARTINEZ, Manish J. BUTTE, Amy WONG, Samuel W. THOMAS, Hayat SINDI, Sarah J. VELLA, Emanuel CARRILHO, Katherine A. MIRICA, Yanyan LIU
  • Patent number: 8628729
    Abstract: Three-dimensional microfluidic devices including by a plurality of patterned porous, hydrophilic layers and a fluid-impermeable layer disposed between every two adjacent patterned porous, hydrophilic layers are described. Each patterned porous, hydrophilic layer has a fluid-impermeable barrier which substantially permeates the thickness of the porous, hydrophilic layer and defines boundaries of one or more hydrophilic regions within the patterned porous, hydrophilic layer. The fluid-impermeable layer has openings which are aligned with at least part of the hydrophilic region within at least one adjacent patterned porous, hydrophilic layer. Microfluidic assay device, microfluidic mixer, microfluidic flow control device are also described.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: January 14, 2014
    Assignee: President and Fellows of Harvard College
    Inventors: Emanuel Carrilho, Andres W. Martinez, Katherine A. Mirica, Scott T. Phillips, Adam C. Siegel, Benjamin Wiley, George M. Whitesides
  • Patent number: 8603832
    Abstract: Embodiments of the invention provide lateral flow and flow-through bioassay devices based on patterned porous media, methods of making same, and methods of using same. Under one aspect, an assay device includes a porous, hydrophilic medium; a fluid impervious barrier comprising polymerized photoresist, the barrier substantially permeating the thickness of the porous, hydrophilic medium and defining a boundary of an assay region within the porous, hydrophilic medium; and an assay reagent in the assay region.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: December 10, 2013
    Assignee: President and Fellows of Harvard College
    Inventors: George M. Whitesides, Scott T. Phillips, Andreas W. Martinez, Manish J. Butte, Amy Wong, Samuel W. Thomas, Hayat Sindi, Sarah J. Vella, Emanuel Carrilho, Katherine A. Mirica, Yanyan Liu
  • Patent number: 8377710
    Abstract: Embodiments of the invention provide lateral flow and flow-through bioassay devices based on patterned porous media, methods of making same, and methods of using same. Under one aspect, an assay device includes a porous, hydrophilic medium; a fluid impervious barrier comprising polymerized photoresist, the barrier substantially permeating the thickness of the porous, hydrophilic medium and defining a boundary of an assay region within the porous, hydrophilic medium; and an assay reagent in the assay region.
    Type: Grant
    Filed: April 16, 2009
    Date of Patent: February 19, 2013
    Assignee: President and Fellows of Harvard College
    Inventors: George M. Whitesides, Scott T. Phillips, Andres W. Martinez, Manish J. Butte, Amy Wong, Samuel W. Thomas, Hayat Sindi, Sarah J. Vella, Emanuel Carrilho, Katherine A. Mirica, Yanyan Liu
  • Publication number: 20130034869
    Abstract: The disclosure provides low cost, portable three-dimensional devices for performing multiplexed assays. The devices comprise at least two substantially planar layers disposed in parallel planes, wherein one of the layers is movable relative to each other parallel to the planes to permit the establishment of fluid flow communication serially between the two layers.
    Type: Application
    Filed: February 3, 2011
    Publication date: February 7, 2013
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: George M. Whitesides, Katherine A. Mirica, Andres W. Martinez, Chao-Min Cheng, Scott T. Phillips, Monica Mascarenas, Xinyu Liu, Xiujun Li
  • Publication number: 20110240151
    Abstract: A fluidic device having a first layer with a first layer wicking channel and a second layer extending across the first layer and having a second layer functional wicking channel. The fluidic device can further include a third layer extending across the second layer, the third layer having a third layer functional wicking channel. The second layer functional wicking channel can have a different function than the third layer functional wicking channel and the functional wicking channels can afford for the fluidic device to be used as a timer, a battery, and/or a chemical assay.
    Type: Application
    Filed: March 31, 2011
    Publication date: October 6, 2011
    Applicant: The Penn State Research Foundation
    Inventors: Scott T. Phillips, Nicole K. Thom, Hyeran Noh
  • Publication number: 20110123398
    Abstract: Three-dimensional microfluidic devices including by a plurality of patterned porous, hydrophilic layers and a fluid-impermeable layer disposed between every two adjacent patterned porous, hydrophilic layers are described. Each patterned porous, hydrophilic layer has a fluid-impermeable barrier which substantially permeates the thickness of the porous, hydrophilic layer and defines boundaries of one or more hydrophilic regions within the patterned porous, hydrophilic layer. The fluid-impermeable layer has openings which are aligned with at least part of the hydrophilic region within at least one adjacent patterned porous, hydrophilic layer. Microfluidic assay device, microfluidic mixer, microfluidic flow control device are also described.
    Type: Application
    Filed: March 27, 2009
    Publication date: May 26, 2011
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Emanuel Carrilho, Andres W. Martinez, Katherine A. Mirica, Scott T. Phillips, Adam C. Siegel, Benjamin Wiley, George M. Whitesides
  • Publication number: 20110111517
    Abstract: Paper-based microfluidic systems and methods of making the same are described.
    Type: Application
    Filed: March 27, 2009
    Publication date: May 12, 2011
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Adam C. Siegel, Scott T. Phillips, Michael D. Dickey, Dorota Rozkiewicz, Benjamin Wiley, George M. Whitesides, Andres W. Martinez
  • Publication number: 20100285606
    Abstract: The ability to levitate, to separate, and to detect changes in density using diamagnetic particles suspended in solutions containing paramagnetic cations using an inhomogeneous magnetic field is described. The major advantages of this separation device are that: i) it is a simple apparatus that does not require electric power (a set of permanent magnets and gravity are sufficient for the diamagnetic separation and collection system to work); ii) it is compatible with simple optical detection (provided that transparent materials are used to fabricate the containers/channels where separation occurs; iii) it is simple to collect the separated particles for further processing; iv) it does not require magnetic labeling of the particles/materials; and v) it is small, portable.
    Type: Application
    Filed: June 30, 2008
    Publication date: November 11, 2010
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Scott T. Phillips, George M. Whitesides, Katherine A. Mirica, Emanuel Carrilho, Andres W. Martinez, Sergey S. Shevkoplyas, Phillip W. Snyder, Raquel Perez-Castillejos, Malancha Gupta, Adam Winkleman, Katherine L. Gudiksen
  • Publication number: 20090298191
    Abstract: Embodiments of the invention provide lateral flow and flow-through bioassay devices based on patterned porous media, methods of making same, and methods of using same. Under one aspect, an assay device includes a porous, hydrophilic medium; a fluid impervious barrier comprising polymerized photoresist, the barrier substantially permeating the thickness of the porous, hydrophilic medium and defining a boundary of an assay region within the porous, hydrophilic medium; and an assay reagent in the assay region.
    Type: Application
    Filed: April 16, 2009
    Publication date: December 3, 2009
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: George M. WHITESIDES, Scott T. PHILLIPS, Andres W. MARTINEZ, Manish J. BUTTE, Amy WONG, Samuel W. THOMAS, Hayat SINDI, Sarah J. VELLA, Emanuel CARRILHO, Katherine A. MIRICA, Yanyan LIU