Patents by Inventor Scott Uhland

Scott Uhland has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040106914
    Abstract: Devices and methods are provided for controlled release of chemical molecules, such as drugs. One device comprises a plurality of reservoirs; a rupturable covering, such as a thin metal film, enclosing a first end of each reservoir; a release formulation in each reservoir comprising chemical molecules for release; an expanding material layer in each reservoir; and a semi-permeable membrane enclosing a second end of each reservoir distal the release formulation, the semi-permeable membrane being operable to permit selected molecules (e.g., water) from outside the reservoir to diffuse to the expanding material layer to expand the expanding material layer and displace the release formulation in an amount effective rupture the rupturable membrane and discharge the release formulation.
    Type: Application
    Filed: September 23, 2003
    Publication date: June 3, 2004
    Inventors: Jonathan R. Coppeta, John T. Santini, Scott A. Uhland
  • Patent number: 6730072
    Abstract: Methods and devices are provided for mechanically sealing the reservoirs of microchip devices to prevent leakage from or between any of the reservoirs. In one embodiment, the method includes sandwiching a microchip device and a gasket material covering the reservoir openings between a front sealing frame and a backplate, such that the gasket material is compressed against the back side of the microchip device by the back plate. The front sealing frame is secured to the back sealing plate using fasteners or welding. The gasket material is preferably a flexible polymeric sheet, which is biocompatible and compatible with the reservoir contents. In another embodiment, a composite backplate is used in place of the back sealing plate and separate gasket material. The composite backplate can include a substrate having sealing plugs defined thereon. The composite backplate also can be designed to hold the drug, thereby combining the assembly steps of reservoir filling and sealing.
    Type: Grant
    Filed: May 30, 2001
    Date of Patent: May 4, 2004
    Assignee: Massachusetts Institute of Technology
    Inventors: Rebecca S. Shawgo, Norman F. Sheppard, Jr., Michael J. Cima, John T. Santini, Jr., Stephen J. Herman, Benjamin F. Polito, Scott A. Uhland
  • Publication number: 20040034332
    Abstract: Implantable devices for controlled delivery of a drug are provided which include a substrate; at least two reservoirs in the substrate, each reservoir having an opening; at least one therapeutic agent in each of the reservoirs; a reservoir cap sealing each opening; a mechanical rupturing mechanism which moves into contact with and ruptures the reservoir cap to permit release the therapeutic agent from the reservoir through the opening; and a mixing chamber adjacent the reservoirs, wherein upon release of the therapeutic agent from at least one of the reservoirs, the therapeutic agent is combined with a carrier fluid in the mixing chamber and then transported to a delivery site in a human or animal.
    Type: Application
    Filed: August 8, 2003
    Publication date: February 19, 2004
    Inventor: Scott A. Uhland
  • Patent number: 6596224
    Abstract: A powder bed (32) is built up by repeated deposition of a slurry that contains powder. Layers are made by depositing a liquid dispersion of the desired powdered material, which then slip-casts into the forming powder bed to make a new layer (34). The slurry may be deposited in any suitable manner, such as by raster or vector scanning, or by a plurality of simultaneous jets that coalesce before the liquid slip-casts into the bed, or by individual drops, the deposits of which are individually controlled, thereby generating a regular surface for each layer.
    Type: Grant
    Filed: March 1, 2000
    Date of Patent: July 22, 2003
    Assignee: Massachusetts Institute of Technology
    Inventors: Emanuel M. Sachs, Michael J. Cima, Michael A. Caradonna, Jason Grau, James G. Serdy, Patrick C. Saxton, Scott A. Uhland, Jooho Moon
  • Patent number: 6537256
    Abstract: Apparatus and methods are provided for the delivery of molecules to a site via a carrier fluid. The apparatus include microchip devices which have reservoirs containing the molecules for release. The apparatus and methods provide for active or passive controlled release of the molecules. Embodiments include systems for release of fragrance molecules and beverage additives.
    Type: Grant
    Filed: July 15, 2002
    Date of Patent: March 25, 2003
    Assignee: MicroCHIPS, Inc.
    Inventors: John T. Santini, Jr., Charles E. Hutchinson, Scott A. Uhland, Michael J. Cima, Robert S. Langer, Dennis Ausiello
  • Publication number: 20030010808
    Abstract: Methods are provided for hermetically sealing the reservoirs of microchip devices and for hermetically sealing the substrate assemblies in a hermetic packaging structure.
    Type: Application
    Filed: June 28, 2002
    Publication date: January 16, 2003
    Inventors: Scott A. Uhland, Benjamin F. Polito, Stephen J. Herman, John T. Santini
  • Patent number: 6491666
    Abstract: Apparati and methods are provided for the delivery of molecules to a site via a carrier fluid. The apparati include microchip devices which have reservoirs containing the molecules for release. The apparati and methods provide for active or passive controlled release of the molecules. Preferred embodiments include systems for intravenous administration of drugs, wherein drug molecules are released from the microchip devices into a carrier fluid ex vivo, such as a saline solution, forming a drug/saline solution mixture which is then delivered to a patient intravenously.
    Type: Grant
    Filed: November 17, 2000
    Date of Patent: December 10, 2002
    Assignee: MicroChips, Inc.
    Inventors: John T. Santini, Jr., Charles E. Hutchinson, Scott A. Uhland, Michael J. Cima, Robert S. Langer, Dennis Ausiello
  • Publication number: 20020183721
    Abstract: Microchip devices and methods of manufacture thereof are provided to increase the uniformity and reliability of active exposure and release of microchip reservoir contents. In one embodiment, the microchip device for the controlled release or exposure of molecules or secondary devices comprises: (1) a substrate having a plurality of reservoirs; (2) reservoir contents comprising molecules, a secondary device, or both, located in the reservoirs; (3) reservoir caps positioned on the reservoirs over the reservoir contents; (4) electrical activation means for disintegrating the reservoir cap to initiate exposure or release of the reservoir contents in selected reservoirs; and (5) a current distribution means, a stress induction means, or both, operably engaged with or integrated into the reservoir cap, to enhance reservoir cap disintegration.
    Type: Application
    Filed: May 31, 2002
    Publication date: December 5, 2002
    Inventors: John T. Santini, Michael J. Cima, Norman F. Sheppard, Nolan T. Flynn, Scott A. Uhland, Zouhair Sbiaa
  • Publication number: 20020173745
    Abstract: Apparatus and methods are provided for the delivery of molecules to a site via a carrier fluid. The apparatus include microchip devices which have reservoirs containing the molecules for release. The apparatus and methods provide for active or passive controlled release of the molecules. Embodiments include systems for release of fragrance molecules and beverage additives.
    Type: Application
    Filed: July 15, 2002
    Publication date: November 21, 2002
    Inventors: John T. Santini, Charles E. Hutchinson, Scott A. Uhland, Michael J. Cima, Robert S. Langer, Dennis Ausiello
  • Publication number: 20020151776
    Abstract: Methods and devices are provided for mechanically sealing the reservoirs of microchip devices to prevent leakage from or between any of the reservoirs. In one embodiment, the method includes sandwiching a microchip device and a gasket material covering the reservoir openings between a front sealing frame and a backplate, such that the gasket material is compressed against the back side of the microchip device by the back plate. The front sealing frame is secured to the back sealing plate using fasteners or welding. The gasket material is preferably a flexible polymeric sheet, which is biocompatible and compatible with the reservoir contents. In another embodiment, a composite backplate is used in place of the back sealing plate and separate gasket material. The composite backplate can include a substrate having sealing plugs defined thereon. The composite backplate also can be designed to hold the drug, thereby combining the assembly steps of reservoir filling and sealing.
    Type: Application
    Filed: May 30, 2001
    Publication date: October 17, 2002
    Inventors: Rebecca S. Shawgo, Norman F. Sheppard, Michael J. Cima, John T. Santini, Stephen J. Herman, Benjamin F. Polito, Scott A. Uhland