Patents by Inventor Scott Waisanen

Scott Waisanen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7235214
    Abstract: A molecular contamination monitoring system includes a piezoelectric measurement sensor exposed to a molecular constituent to be measured; a piezoelectric reference sensor; and a filter for filtering said molecular constituent, the filter located between the reference sensor and the measurement environment. The reference sensor is exposed to the same ambient conditions of temperature, pressure and humidity as the measurement sensor. Alternatively, there may be a plurality of different reference sensors having different filters, or there may be a plurality of different measurement sensors.
    Type: Grant
    Filed: April 23, 2003
    Date of Patent: June 26, 2007
    Assignee: Particle Measuring Systems, Inc.
    Inventors: Daniel Rodier, Scott Waisanen, Dale Griffin
  • Patent number: 7208123
    Abstract: A flow-through monitor for detecting molecular contamination (MC) within a fluid flow. The monitor has a diffusion chamber having an inlet port and an outlet port, and a structure for supporting a fluid flow from the inlet port to the outlet port. The structure includes a flow gap causing a diffusion of molecular contaminants into the diffusion chamber, while substantially preventing, for a rate of the fluid flow above a predetermined magnitude, particulate contaminants within the fluid from entering the diffusion chamber. A SAW device detects molecular contamination interior to the diffusion chamber. Fluid input to the flow-through monitor may be diluted by a pure fluid for extended monitor life. A system for aggregate sampling connects an ensemble manifold upstream of the flow-through monitor. A system for triggered sampling connects a sample preconcentrator downstream of the flow-through monitor. A chemically selective membrane may be located between the flow gap and the SAW.
    Type: Grant
    Filed: June 24, 2002
    Date of Patent: April 24, 2007
    Assignee: Particle Measuring Systems, Inc.
    Inventors: Brian A. Knollenberg, Daniel Rodier, Scott Waisanen
  • Publication number: 20040214334
    Abstract: A molecular contamination monitoring system includes a piezoelectric measurement sensor exposed to a molecular constituent to be measured; a piezoelectric reference sensor; and a filter for filtering said molecular constituent, the filter located between the reference sensor and the measurement environment. The reference sensor is exposed to the same ambient conditions of temperature, pressure and humidity as the measurement sensor. Alternatively, there may be a plurality of different reference sensors having different filters, or there may be a plurality of different measurement sensors.
    Type: Application
    Filed: April 23, 2003
    Publication date: October 28, 2004
    Applicant: Particle Measuring Systems, Inc.
    Inventors: Daniel Rodier, Scott Waisanen, Dale Griffin
  • Publication number: 20030235926
    Abstract: A flow-through monitor for detecting molecular contamination (MC) within a fluid flow. The monitor has a diffusion chamber having an inlet port and an outlet port, and a structure for supporting a fluid flow from the inlet port to the outlet port. The structure includes a flow gap causing a diffusion of molecular contaminants into the diffusion chamber, while substantially preventing, for a rate of the fluid flow above a predetermined magnitude, particulate contaminants within the fluid from entering the diffusion chamber. A SAW device detects molecular contamination interior to the diffusion chamber. Fluid input to the flow-through monitor may be diluted by a pure fluid for extended monitor life. A system for aggregate sampling connects an ensemble manifold upstream of the flow-through monitor. A system for triggered sampling connects a sample preconcentrator downstream of the flow-through monitor. A chemically selective membrane may be located between the flow gap and the SAW.
    Type: Application
    Filed: June 24, 2002
    Publication date: December 25, 2003
    Applicant: Particle Measuring Systems, Inc.
    Inventors: Brian A. Knollenberg, Daniel Rodier, Scott Waisanen
  • Patent number: 6275290
    Abstract: A sensitive particle distribution probe uses special processing including a modified Twomey/Chahine iterative convergence technique and a specially constructed sample cell to obtain particle size distribution measurements from optically dense slurries, such as the slurries used in the semiconductor industry for chemical mechanical planarization. Spectral transmission data is taken over the spectral range of 0.20-2.5 microns, utilizing specially constructed, chemically resistant sample cells of 50-2000 microns thickness, and miniature, fixed grating, linear detector array spectrometers. At wavelengths greater than one micron, the preferred design utilizes InGaAs linear detector arrays. An ultrasonic disrupter can be employed to breakup harmless soft agglomerates. In addition to direct particle size distribution measurement, the invention described here could be used to detect other fundamental causes of slurry degradation, such as foaming and jelling.
    Type: Grant
    Filed: April 22, 1999
    Date of Patent: August 14, 2001
    Assignee: Particle Measuring Systems, Inc.
    Inventors: Todd A. Cerni, Scott Waisanen, Dennis J. Knowlton
  • Patent number: 6246474
    Abstract: A very sensitive particle distribution probe uses special processing including a modified Twomey/Chahine iterative convergence technique and a specially constructed sample cell to obtain particle size distribution measurements from optically dense slurries, such as the slurries used in the semiconductor industry for chemical mechanical planarization. Spectral transmission data is taken over the spectral range of 0.20-2.5 microns, utilizing specially constructed, chemically resistant sample cells of 50-250 microns thickness, and miniature, fixed grating, linear detector array spectrometers. At wavelengths greater than 1 micron, the preferred design utilizes InGaAs linear detector arrays. An ultrasonic disrupter can be employed to breakup harmless soft agglomerates. In addition to direct particle size distribution measurement, the invention described here could be used to detect other fundamental causes of slurry degradation, such as foaming and jelling.
    Type: Grant
    Filed: April 29, 1998
    Date of Patent: June 12, 2001
    Assignee: Particle Measuring Systems, Inc.
    Inventors: Todd A. Cerni, Scott Waisanen
  • Patent number: RE39783
    Abstract: A sensitive particle distribution probe uses special processing including a modified Twomey/Chahine iterative convergence technique and a specially constructed sample cell to obtain particle size distribution measurements from optically dense slurries, such as the slurries used in the semiconductor industry for chemical mechanical planarization. Spectral transmission data is taken over the spectral range of 0.20-2.5 microns, utilizing specially constructed, chemically resistant sample cells of 50-2000 microns thickness, and miniature, fixed grating, linear detector array spectrometers. At wavelengths greater than one micron, the preferred design utilizes InGaAs linear detector arrays. An ultrasonic disrupter can be employed to breakup harmless soft agglomerates. In addition to direct particle size distribution measurement, the invention described here could be used to detect other fundamental causes of slurry degradation, such as foaming and jelling.
    Type: Grant
    Filed: August 12, 2003
    Date of Patent: August 21, 2007
    Assignee: Particle Measuring Systems, Inc.
    Inventors: Todd A. Cerni, Scott Waisanen, Dennis J. Knowlton