Patents by Inventor Scott Wisdom

Scott Wisdom has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250149058
    Abstract: Apparatus and methods related to separation of audio sources are provided. The method includes receiving an audio waveform associated with a plurality of video frames. The method includes estimating, by a neural network, one or more audio sources associated with the plurality of video frames. The method includes generating, by the neural network, one or more audio embeddings corresponding to the one or more estimated audio sources. The method includes determining, based on the audio embeddings and a video embedding, whether one or more audio sources of the one or more estimated audio sources correspond to objects in the plurality of video frames. The method includes predicting, by the neural network and based on the one or more audio embeddings and the video embedding, a version of the audio waveform comprising audio sources that correspond to objects in the plurality of video frames.
    Type: Application
    Filed: January 9, 2025
    Publication date: May 8, 2025
    Inventors: Efthymios Tzinis, Scott Wisdom, Aren Jansen, John R. Hershey
  • Patent number: 12217768
    Abstract: Apparatus and methods related to separation of audio sources are provided. The method includes receiving an audio waveform associated with a plurality of video frames. The method includes estimating, by a neural network, one or more audio sources associated with the plurality of video frames. The method includes generating, by the neural network, one or more audio embeddings corresponding to the one or more estimated audio sources. The method includes determining, based on the audio embeddings and a video embedding, whether one or more audio sources of the one or more estimated audio sources correspond to objects in the plurality of video frames. The method includes predicting, by the neural network and based on the one or more audio embeddings and the video embedding, a version of the audio waveform comprising audio sources that correspond to objects in the plurality of video frames.
    Type: Grant
    Filed: July 26, 2023
    Date of Patent: February 4, 2025
    Assignee: Google LLC
    Inventors: Efthymios Tzinis, Scott Wisdom, Aren Jansen, John R. Hershey
  • Publication number: 20230386502
    Abstract: Apparatus and methods related to separation of audio sources are provided. The method includes receiving an audio waveform associated with a plurality of video frames. The method includes estimating, by a neural network, one or more audio sources associated with the plurality of video frames. The method includes generating, by the neural network, one or more audio embeddings corresponding to the one or more estimated audio sources. The method includes determining, based on the audio embeddings and a video embedding, whether one or more audio sources of the one or more estimated audio sources correspond to objects in the plurality of video frames. The method includes predicting, by the neural network and based on the one or more audio embeddings and the video embedding, a version of the audio waveform comprising audio sources that correspond to objects in the plurality of video frames.
    Type: Application
    Filed: July 26, 2023
    Publication date: November 30, 2023
    Inventors: Efthymios Tzinis, Scott Wisdom, Aren Jansen, John R. Hershey
  • Patent number: 11756570
    Abstract: Apparatus and methods related to separation of audio sources are provided. The method includes receiving an audio waveform associated with a plurality of video frames. The method includes estimating, by a neural network, one or more audio sources associated with the plurality of video frames. The method includes generating, by the neural network, one or more audio embeddings corresponding to the one or more estimated audio sources. The method includes determining, based on the audio embeddings and a video embedding, whether one or more audio sources of the one or more estimated audio sources correspond to objects in the plurality of video frames. The method includes predicting, by the neural network and based on the one or more audio embeddings and the video embedding, a version of the audio waveform comprising audio sources that correspond to objects in the plurality of video frames.
    Type: Grant
    Filed: March 26, 2021
    Date of Patent: September 12, 2023
    Assignee: Google LLC
    Inventors: Efthymios Tzinis, Scott Wisdom, Aren Jansen, John R Hershey
  • Patent number: 11722017
    Abstract: An adaptive system for efficient and long-range wireless power delivery using magnetically coupled resonators responds to changes in a dynamic environment, and maintains high efficiency over a narrow or fixed frequency range. The system uses adaptive impedance matching to maintain high efficiency. The wireless power transfer system includes a drive inductor coupled to a high-Q transmitter coil, and a load inductor coupled to a high-Q receiver coil. The transmitter coil and receiver coil for a magnetically coupled resonator. A first matching network is (i) operably coupled to the drive inductor and configured to selectively adjust the impedance between the drive inductor and the transmitter coil, or (ii) is operably coupled to the load inductor and configured to selectively adjust the impedance between the load inductor and the receiver coil.
    Type: Grant
    Filed: July 15, 2021
    Date of Patent: August 8, 2023
    Assignee: University of Washington through its Center for Commercialization
    Inventors: Joshua R. Smith, Benjamin H. Waters, Scott Wisdom, Alanson P. Sample
  • Publication number: 20220310113
    Abstract: Apparatus and methods related to separation of audio sources are provided. The method includes receiving an audio waveform associated with a plurality of video frames. The method includes estimating, by a neural network, one or more audio sources associated with the plurality of video frames. The method includes generating, by the neural network, one or more audio embeddings corresponding to the one or more estimated audio sources. The method includes determining, based on the audio embeddings and a video embedding, whether one or more audio sources of the one or more estimated audio sources correspond to objects in the plurality of video frames. The method includes predicting, by the neural network and based on the one or more audio embeddings and the video embedding, a version of the audio waveform comprising audio sources that correspond to objects in the plurality of video frames.
    Type: Application
    Filed: March 26, 2021
    Publication date: September 29, 2022
    Inventors: Efthymios Tzinis, Scott Wisdom, Aren Jansen, John R. Hershey
  • Publication number: 20210339008
    Abstract: An adaptive system for efficient and long-range wireless power delivery using magnetically coupled resonators responds to changes in a dynamic environment, and maintains high efficiency over a narrow or fixed frequency range. The system uses adaptive impedance matching to maintain high efficiency. The wireless power transfer system includes a drive inductor coupled to a high-Q transmitter coil, and a load inductor coupled to a high-Q receiver coil. The transmitter coil and receiver coil for a magnetically coupled resonator. A first matching network is (i) operably coupled to the drive inductor and configured to selectively adjust the impedance between the drive inductor and the transmitter coil, or (ii) is operably coupled to the load inductor and configured to selectively adjust the impedance between the load inductor and the receiver coil.
    Type: Application
    Filed: July 15, 2021
    Publication date: November 4, 2021
    Applicant: University of Washington through its Center for Commercialization
    Inventors: Joshua R. Smith, Benjamin H. Waters, Scott Wisdom, Alanson P. Sample
  • Patent number: 11090481
    Abstract: An adaptive system for efficient and long-range wireless power delivery using magnetically coupled resonators responds to changes in a dynamic environment, and maintains high efficiency over a narrow or fixed frequency range. The system uses adaptive impedance matching to maintain high efficiency. The wireless power transfer system includes a drive inductor coupled to a high-Q transmitter coil, and a load inductor coupled to a high-Q receiver coil. The transmitter coil and receiver coil for a magnetically coupled resonator. A first matching network is (i) operably coupled to the drive inductor and configured to selectively adjust the impedance between the drive inductor and the transmitter coil, or (ii) is operably coupled to the load inductor and configured to selectively adjust the impedance between the load inductor and the receiver coil.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: August 17, 2021
    Assignee: University of Washington through its Center for Commercialization
    Inventors: Joshua R. Smith, Benjamin H. Waters, Scott Wisdom, Alanson P. Sample
  • Publication number: 20190280527
    Abstract: An adaptive system for efficient and long-range wireless power delivery using magnetically coupled resonators responds to changes in a dynamic environment, and maintains high efficiency over a narrow or fixed frequency range. The system uses adaptive impedance matching to maintain high efficiency. The wireless power transfer system includes a drive inductor coupled to a high-Q transmitter coil, and a load inductor coupled to a high-Q receiver coil. The transmitter coil and receiver coil for a magnetically coupled resonator. A first matching network is (i) operably coupled to the drive inductor and configured to selectively adjust the impedance between the drive inductor and the transmitter coil, or (ii) is operably coupled to the load inductor and configured to selectively adjust the impedance between the load inductor and the receiver coil.
    Type: Application
    Filed: March 19, 2019
    Publication date: September 12, 2019
    Applicant: University of Washington through its Center for Commercialization
    Inventors: Joshua R. Smith, Benjamin H. Waters, Scott Wisdom, Alanson P. Sample
  • Publication number: 20150280444
    Abstract: An adaptive system for efficient and long-range wireless power delivery using magnetically coupled resonators responds to changes in a dynamic environment, and maintains high efficiency over a narrow or fixed frequency range. The system uses adaptive impedance matching to maintain high efficiency. The wireless power transfer system includes a drive inductor coupled to a high-Q transmitter coil, and a load inductor coupled to a high-Q receiver coil. The transmitter coil and receiver coil for a magnetically coupled resonator. A first matching network is (i) operably coupled to the drive inductor and configured to selectively adjust the impedance between the drive inductor and the transmitter coil, or (ii) is operably coupled to the load inductor and configured to selectively adjust the impedance between the load inductor and the receiver coil.
    Type: Application
    Filed: May 21, 2013
    Publication date: October 1, 2015
    Applicant: University of Washington through its Center for Commercialization
    Inventors: Joshua R. Smith, Benjamin H. Waters, Scott Wisdom, Alanson P. Sample