Patents by Inventor Sean C. Gifford

Sean C. Gifford has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180093023
    Abstract: Described are devices, methods, and kits for controlled incremental filtration (CIF), as well as methods of designing CIF devices. For example, a method for CIF may modulate a concentration of particles of a desired size in a fluid. The fluid including the particles may be flowed along a flow path through a central channel to contact a plurality of gaps that fluidically couple the central channel to at least one adjacent side channel network. Flow resistance may be decreased along at least a portion of the flow path effective to modulate the concentration of particles. The method may include selecting the plurality of gaps to be larger than the particles. The method may include causing a consistent flow fraction fgap in the central channel to traverse each gap in the plurality of gaps and flow through the at least one side channel network along the flow path.
    Type: Application
    Filed: October 16, 2017
    Publication date: April 5, 2018
    Inventors: Sean C. GIFFORD, Sergey S. SHEVKOPLYAS
  • Patent number: 9789235
    Abstract: Described are devices, methods, and kits for controlled incremental filtration (CIF), as well as methods of designing CIF devices. For example, a method for CIF may modulate a concentration of particles of a desired size in a fluid. The fluid including the particles may be flowed along a flow path through a central channel to contact a plurality of gaps that fluidically couple the central channel to at least one adjacent side channel network. Flow resistance may be decreased along at least a portion of the flow path effective to modulate the concentration of particles. The method may include selecting the plurality of gaps to be larger than the particles. The method may include causing a consistent flow fraction fgap in the central channel to traverse each gap in the plurality of gaps and flow through the at least one side channel network along the flow path.
    Type: Grant
    Filed: January 20, 2015
    Date of Patent: October 17, 2017
    Assignees: THE ADMINISTRATORS OF THE TULANE EDUCATIONAL FUND, HALCYON BIOMEDICAL, INCORPORATED
    Inventors: Sean C. Gifford, Sergey S. Shevkoplyas
  • Patent number: 9550016
    Abstract: Described are systems, methods, and kits for compression sedimentation and whole blood separation. For example, a compression sedimentation system may include a compression stage configured to accept a flexible reservoir configured to contain a liquid mixture. The compression stage may include a base substrate and a compression substrate configured to apply a force to the flexible reservoir effective to create a pressure in the liquid mixture. An apparatus for whole blood separation may include a sedimentation system that separates whole blood into a supernatant including platelet rich plasma and a subnatant including red blood cells. At least one platelet-concentrating device may be included to receive the supernatant including the PRP and to separate a platelet concentrate and a platelet poor plasma from the supernatant.
    Type: Grant
    Filed: January 20, 2015
    Date of Patent: January 24, 2017
    Assignee: Halcyon Biomedical, Incorporated
    Inventor: Sean C. Gifford
  • Publication number: 20150202549
    Abstract: Described are devices, methods, and kits for controlled incremental filtration (CIF), as well as methods of designing CIF devices. For example, a method for CIF may modulate a concentration of particles of a desired size in a fluid. The fluid including the particles may be flowed along a flow path through a central channel to contact a plurality of gaps that fluidically couple the central channel to at least one adjacent side channel network. Flow resistance may be decreased along at least a portion of the flow path effective to modulate the concentration of particles. The method may include selecting the plurality of gaps to be larger than the particles. The method may include causing a consistent flow fraction fgap in the central channel to traverse each gap in the plurality of gaps and flow through the at least one side channel network along the flow path.
    Type: Application
    Filed: January 20, 2015
    Publication date: July 23, 2015
    Inventors: Sean C. Gifford, Sergey S. Shevkoplyas
  • Publication number: 20150202356
    Abstract: Described are systems, methods, and kits for compression sedimentation and whole blood separation. For example, a compression sedimentation system may include a compression stage configured to accept a flexible reservoir configured to contain a liquid mixture. The compression stage may include a base substrate and a compression substrate configured to apply a force to the flexible reservoir effective to create a pressure in the liquid mixture. An apparatus for whole blood separation may include a sedimentation system that separates whole blood into a supernatant including platelet rich plasma and a subnatant including red blood cells. At least one platelet-concentrating device may be included to receive the supernatant including the PRP and to separate a platelet concentrate and a platelet poor plasma from the supernatant.
    Type: Application
    Filed: January 20, 2015
    Publication date: July 23, 2015
    Inventor: Sean C. Gifford