Patents by Inventor Sean Conte

Sean Conte has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230143941
    Abstract: A three-way catalyst article with improved ammonia emission control, and its use in an exhaust system for gasoline engines, is disclosed. The catalyst article for treating exhaust gas from a gasoline engine comprising: a substrate comprising an inlet end, an outlet end with an axial length L; a first catalytic region beginning at the inlet end, wherein the first catalytic region comprises a first zeolite; and a second catalytic region beginning at the outlet end, wherein the second catalytic region comprises a second platinum group metal (PGM) component, a second oxygen storage capacity (OSC) material, and a second inorganic oxide; wherein the second PGM component is selected from the group consisting of palladium, platinum, rhodium and a combination thereof.
    Type: Application
    Filed: October 27, 2022
    Publication date: May 11, 2023
    Inventors: Guy Richard CHANDLER, Sean CONTE, Vincent FERRAND, Michael HOWARD, Shuhei NAGAOKA, Alexis POWELL, Xiaorui ZHANG
  • Publication number: 20220267533
    Abstract: A thermally conductive polysiloxane composition includes (A) a thermally conductive filler and (B) one or more compounds selected from an alkoxysilyl group-containing compound and a dimethylpolysiloxane, wherein: component (A) includes (A-1) round, indefinite-shaped or polyhedral aluminum nitride particles having an average particle diameter of from 50 ?m to 150 ?m and (A-2) round, indefinite-shaped or polyhedral aluminum nitride particles having an average particle diameter of 10 ?m or more but less than 50 ?m in an amount of from 20% by mass to 100% by mass relative to the total amount of component (A); and the content ratio of component (A-1) to component (A-2) is from 50:50 to 95:5 on a mass basis.
    Type: Application
    Filed: June 24, 2020
    Publication date: August 25, 2022
    Applicant: MOMENTIVE PERFORMANCE MATERIALS JAPAN LLC
    Inventors: Atsushi SAKAMOTO, Sean CONTE
  • Patent number: 10591435
    Abstract: Electropolymerized polymer or copolymer films on a conducting substrate (e.g., graphene) and methods of making such films. The films may be part of multilayer structures. The films can be formed by anodic or cathodic electropolymerization of monomers. The films and structures (e.g., multilayer structures) can be used in devices such as, for example, electrochromic devices, electrical-energy storage devices, photo-voltaic devices, field-effect transistor devices, electrical devices, electronic devices, energy-generation devices, and microfluidic devices.
    Type: Grant
    Filed: April 3, 2015
    Date of Patent: March 17, 2020
    Assignee: Cornell University
    Inventors: Sean Conte, Gabriel G. Rodriguez-Calero, Cen Tan, Kenneth Hernandez-Burgos, Hector D. Abruna, Nicole Ritzert, Daniel C. Ralph, Wan Li
  • Patent number: 10545094
    Abstract: A system and method for the detection of one or more analytes in a collected sample employs capillary action in a sample card containing a sample substrate, at least one test capsule and an absorbent pad. The absorbent pad absorbs the contents of the test capsule and delivers the same to the sample substrate, with the contents of the test capsule chemically reacting with at least one detection reagent to establish an optical indicator for the analyte(s). The sample card can be automatically tested within a reader device, which records and processes an optical signal produced by the chemical reaction and outputs a test result. The collected sample can then be further analyzed using a second device. Additionally, an adhesive component can be provided so that a sample can be collected thereon. Furthermore, the at least one detection reagent can include a surfactant.
    Type: Grant
    Filed: November 3, 2017
    Date of Patent: January 28, 2020
    Assignee: RedXDefense, LLC.
    Inventors: Arman Ghodousi, Sarah Josepha Toal, Gregory Scott Ericksen, Daniel Douglas Montgomery, Thomas Emory McVeigh, Jacek Kotowicz, Sean Conte
  • Patent number: 10436748
    Abstract: This disclosure describes methods, apparatuses, and systems to determine the presence of a chemical substance in an environment, by detecting one or more chemical substances in the environment by using at least one sensor that performs one or more electrochemical tests on one or more chemical samples in the environment, and generates one or more electrical signals corresponding to the chemical samples in the environment. The methods, apparatuses, and systems may also receive and process the one or more electrical signals corresponding to the one or more samples from the environment, wherein the methods, apparatuses, and systems compare the electrical signals to electrical signals corresponding to profiles of known chemical substances in the environment to determine if a match exists. The methods, apparatuses, and systems may compare the electrical signals to baseline threshold values of known chemical substances in the environment to determine if there is an excess or lack of the chemical substance.
    Type: Grant
    Filed: December 15, 2016
    Date of Patent: October 8, 2019
    Assignee: POCKET LABORATORIES, LLC
    Inventors: Sean Conte, Christopher Anthony Cassano, Michael Albin Grisanti, Corey Letcher
  • Patent number: 10079401
    Abstract: A redox flow battery comprising: a positive compartment containing a positive electrode in contact with a liquid electrolyte comprised of an organic redox active molecule dissolved in a solvent; a negative compartment containing a negative electrode in contact with a liquid electrolyte comprised of said organic redox active molecule dissolved in a solvent; electrical communication means for establishing electrical communication between said positive electrode, said negative electrode and an external load for directing electrical energy into or out of said symmetric redox flow battery; a separator component that separates the electrolyte solutions in the positive and negative compartments while permitting the passage of non-redox-active species between electrolyte solutions in positive and negative compartments; and means capable of establishing flow of the electrolyte solutions past said positive and negative electrodes, respectively.
    Type: Grant
    Filed: March 23, 2015
    Date of Patent: September 18, 2018
    Assignee: CORNELL UNIVERSITY
    Inventors: Rebecca Potash, James R. McKone, Hector D. Abruna, Sean Conte
  • Publication number: 20180052113
    Abstract: A system and method for the detection of one or more analytes in a collected sample employs capillary action in a sample card containing a sample substrate, at least one test capsule and an absorbent pad. The absorbent pad absorbs the contents of the test capsule and delivers the same to the sample substrate, with the contents of the test capsule chemically reacting with at least one detection reagent to establish an optical indicator for the analyte(s). The sample card can be automatically tested within a reader device, which records and processes an optical signal produced by the chemical reaction and outputs a test result. The collected sample can then be further analyzed using a second device. Additionally, an adhesive component can be provided so that a sample can be collected thereon. Furthermore, the at least one detection reagent can include a surfactant.
    Type: Application
    Filed: November 3, 2017
    Publication date: February 22, 2018
    Applicant: RedXDefense, LLC
    Inventors: Arman GHODOUSI, Sarah Josepha TOAL, Gregory Scott ERICKSEN, Daniel Douglas MONTGOMERY, Thomas Emory MCVEIGH, Jacek KOTOWICZ, Sean CONTE
  • Patent number: 9810638
    Abstract: A system and method for the detection of one or more analytes in a collected sample employs capillary action in a sample card containing a sample substrate, at least one test capsule and an absorbent pad. The absorbent pad absorbs the contents of the test capsule and delivers the same to the sample substrate, with the contents of the test capsule chemically reacting with at least one detection reagent to establish an optical indicator for the analyte(s). The sample card can be automatically tested within a reader device, which records and processes an optical signal produced by the chemical reaction and outputs a test result. The collected sample can then be further analyzed using a second device. Additionally, an adhesive component can be provided so that a sample can be collected thereon. Furthermore, the at least one detection reagent can include a surfactant.
    Type: Grant
    Filed: June 6, 2014
    Date of Patent: November 7, 2017
    Assignee: REDXDEFENSE, LLC
    Inventors: Arman Ghodousi, Sarah Josepha Toal, Gregory Scott Ericksen, Daniel Douglas Montgomery, Thomas Emory McVeigh, Jacek Kotowicz, Sean Conte
  • Publication number: 20170187059
    Abstract: A redox flow battery comprising: a positive compartment containing a positive electrode in contact with a liquid electrolyte comprised of an organic redox active molecule dissolved in a solvent; a negative compartment containing a negative electrode in contact with a liquid electrolyte comprised of said organic redox active molecule dissolved in a solvent; electrical communication means for establishing electrical communication between said positive electrode, said negative electrode and an external load for directing electrical energy into or out of said symmetric redox flow battery; a separator component that separates the electrolyte solutions in the positive and negative compartments while permitting the passage of non-redox-active species between electrolyte solutions in positive and negative compartments; and means capable of establishing flow of the electrolyte solutions past said positive and negative electrodes, respectively.
    Type: Application
    Filed: March 23, 2015
    Publication date: June 29, 2017
    Applicant: CORNELL UNIVERSITY
    Inventors: Rebecca POTASH, James R. MCKONE, Hector D. ABRUNA, Sean CONTE
  • Publication number: 20170168014
    Abstract: This disclosure describes methods, apparatuses, and systems to determine the presence of a chemical substance in an environment, by detecting one or more chemical substances in the environment by using at least one sensor that performs one or more electrochemical tests on one or more chemical samples in the environment, and generates one or more electrical signals corresponding to the chemical samples in the environment. The methods, apparatuses, and systems may also receive and process the one or more electrical signals corresponding to the one or more samples from the environment, wherein the methods, apparatuses, and systems compare the electrical signals to electrical signals corresponding to profiles of known chemical substances in the environment to determine if a match exists. The methods, apparatuses, and systems may compare the electrical signals to baseline threshold values of known chemical substances in the environment to determine if there is an excess or lack of the chemical substance.
    Type: Application
    Filed: December 15, 2016
    Publication date: June 15, 2017
    Inventors: Sean CONTE, Christopher Anthony CASSANO, Michael Albin GRISANTI, Corey LETCHER
  • Publication number: 20170023513
    Abstract: Electropolymerized polymer or copolymer films on a conducting substrate (e.g., graphene) and methods of making such films. The films may be part of multilayer structures. The films can be formed by anodic or cathodic electropolymerization of monomers. The films and structures (e.g., multilayer structures) can be used in devices such as, for example, electrochromic devices, electrical-energy storage devices, photo-voltaic devices, field-effect transistor devices, electrical devices, electronic devices, energy-generation devices, and microfluidic devices.
    Type: Application
    Filed: April 3, 2015
    Publication date: January 26, 2017
    Inventors: Sean CONTE, Gabriel G. RODRIGUEZ-CALERO, Cen TAN, Kenneth HERNANDEZ-BURGOS, Hector D. ABRUNA, Nicole RITZERT, Daniel C. RALPH, Wan LI
  • Publication number: 20140287520
    Abstract: A system and method for the detection of one or more analytes in a collected sample employs capillary action in a sample card containing a sample substrate, at least one test capsule and an absorbent pad. The absorbent pad absorbs the contents of the test capsule and delivers the same to the sample substrate, with the contents of the test capsule chemically reacting with at least one detection reagent to establish an optical indicator for the analyte(s). The sample card can be automatically tested within a reader device, which records and processes an optical signal produced by the chemical reaction and outputs a test result. The collected sample can then be further analyzed using a second device. Additionally, an adhesive component can be provided so that a sample can be collected thereon. Furthermore, the at least one detection reagent can include a surfactant.
    Type: Application
    Filed: June 6, 2014
    Publication date: September 25, 2014
    Inventors: Arman Ghodousi, Sarah Josepha Toal, Gregory Scott Ericksen, Daniel Douglas Montgomery, Thomas Emory McVeigh, Jacek Kotowicz, Sean Conte