Patents by Inventor Sean Doris

Sean Doris has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230212558
    Abstract: Molecular beacons and developmental methods related thereto. Methods include obtaining a nucleotide sequence for an aptamer that binds to a target analyte. The aptamer comprises a binding domain nucleotide sequence, a first domain nucleotide sequence, and a displacement domain nucleotide sequence complementary to the first domain nucleotide sequence. A molecular beacon is developed based on the nucleotide sequence of the aptamer by preserving the binding domain nucleotide sequence and truncating or extending one or both of the first domain nucleotide sequence or the displacement domain nucleotide sequence. The resultant molecular beacon is developed such that the molecular beacon comprises a Gibbs free energy value that is greater than the Gibbs free energy value of the aptamer.
    Type: Application
    Filed: January 6, 2022
    Publication date: July 6, 2023
    Applicant: Palo Alto Research Center Incorporated
    Inventors: Jerome UNIDAD, Sean DORIS
  • Patent number: 11651169
    Abstract: Systems and methods for operating a tag system. The methods comprising: emitting a wireless signal from an antenna of the tag with a first signal characteristic when the tag is proximate to an active antenna modulation marker; changing an impedance of a sensor from a first impedance value to a second impedance value when the active antenna modulation marker is exposed to a stimulus; and emitting a wireless signal from the antenna of the tag with a second signal characteristic when the tag is proximate to the active antenna modulation marker and the sensor has the second impedance value.
    Type: Grant
    Filed: April 9, 2021
    Date of Patent: May 16, 2023
    Assignee: XEROX CORPORATION
    Inventors: Ping Mei, Sean Doris, Janos Veres, Robert Anthony Street
  • Publication number: 20230097591
    Abstract: Affinity sensors may exhibit advantaged regeneration behavior when pH is changed in proximity to a sensing element. Such affinity sensors may comprise at least one sensing element comprising a recognition moiety that interacts with an analyte by reversibly forming an analyte complex, and a solid-state pH-modulating element in proximity to the at least one sensing element, wherein formation of the analyte complex is pH-dependent and the at least one sensing element provides a signal that changes when the analyte complex reversibly forms, and a change in magnitude of the signal is correlatable to an amount of analyte interacted with the at least one sensing element.
    Type: Application
    Filed: September 22, 2021
    Publication date: March 30, 2023
    Applicant: Palo Alto Research Center Incorporated
    Inventors: Sean DORIS, Anne PLOCHOWIETZ, Jerome UNIDAD
  • Publication number: 20220327295
    Abstract: Systems and methods for operating a tag system. The methods comprising: emitting a wireless signal from an antenna of the tag with a first signal characteristic when the tag is proximate to an active antenna modulation marker; changing an impedance of a sensor from a first impedance value to a second impedance value when the active antenna modulation marker is exposed to a stimulus; and emitting a wireless signal from the antenna of the tag with a second signal characteristic when the tag is proximate to the active antenna modulation marker and the sensor has the second impedance value.
    Type: Application
    Filed: April 9, 2021
    Publication date: October 13, 2022
    Inventors: Ping Mei, Sean Doris, Janos Veres, Robert Anthony Street
  • Patent number: 10589248
    Abstract: One embodiment provides a chemical reactor, which can comprise a substrate for facilitating chemical reactions occurring at triple-phase boundaries. One possible substrate may further comprise a set of dynamically controllable sites and/or pixels upon which control signals may affect a desired formation of gas bubbles over an active catalytic (or other desired) solid surface in a liquid flow—wherein a chemical reaction in two or more phase boundaries may occur. In yet another embodiment, a control algorithm may send control signals to controllable sites/pixels to maximize the operation of the reactor according to a desired metric (e.g., product formation) that may input a set of sensor data to affect its control.
    Type: Grant
    Filed: June 30, 2019
    Date of Patent: March 17, 2020
    Assignees: Palo Alto Research Center Incorporated, Xerox Corporation
    Inventors: Sean Doris, Warren Jackson, Naveen Chopra, Bradley Rupp, Robert Street