Patents by Inventor Sean Erickson

Sean Erickson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080064180
    Abstract: A deep n-well is formed beneath the area of an inductor coil. The use of a deep n-well lessens the parasitic capacitance by placing a diode in series with the interlayer dielectric cap. The deep n-well also reduces substrate noise. Once the n-well is implanted and annealed, a cross hatch of shallow trench isolation is patterned over the n-well. The shallow trench isolation reduces and confines the inductively coupled surface currents to small areas that are then isolated from the rest of the chip.
    Type: Application
    Filed: September 17, 2007
    Publication date: March 13, 2008
    Inventors: SEAN ERICKSON, Jason Hudson
  • Patent number: 7327011
    Abstract: A plate to plate capacitor has a first plate, a second plate, and an insulating medium separating the first plate from the second plate. The first plate and the second plate are adapted and arranged to form an interlaced structure in which multiple capacitance surface areas in different planes, such as horizontal and vertical, are provided between said first and second plates. The plate to plate capacitor can be formed as a stack of layers in which one or more alternating first and third insulating layers each have first and second conductive lines configured therein and in which one or more second insulating layers having conductive vias formed therein interpose respective first and third insulating layers. The first and second conductive lines in the first insulating layer(s) are interconnected by the conductive vias to the first and second conductive lines, respectively, in the third layer(s) so as to interlace the first and second metal conductive lines together.
    Type: Grant
    Filed: November 2, 2005
    Date of Patent: February 5, 2008
    Assignee: LSI Logic Corporation
    Inventors: Jason D. Hudson, Sean Erickson, Michael J. Saunders
  • Publication number: 20070096252
    Abstract: A plate to plate capacitor has a first plate, a second plate, and an insulating medium separating the first plate from the second plate. The first plate and the second plate are adapted and arranged to form an interlaced structure in which multiple capacitance surface areas in different planes, such as horizontal and vertical, are provided between said first and second plates. The plate to plate capacitor can be formed as a stack of layers in which one or more alternating first and third insulating layers each have first and second conductive lines configured therein and in which one or more second insulating layers having conductive vias formed therein interpose respective first and third insulating layers. The first and second conductive lines in the first insulating layer(s) are interconnected by the conductive vias to the first and second conductive lines, respectively, in the third layer(s) so as to interlace the first and second metal conductive lines together.
    Type: Application
    Filed: November 2, 2005
    Publication date: May 3, 2007
    Inventors: Jason Hudson, Sean Erickson, Michael Saunders
  • Patent number: 7148556
    Abstract: A p-type polysilicon resistor formed in the inter-level dielectric layer contains an implanted diode. A positive voltage applied to the diode modulates the depletion region of the diode and changes the absolute resistance of the p-type polysilicon resistor. This modulation occurs not only horizontally, but also vertically. The fact that the tunable resistor is a p-type polysilicon resistor means that this structure can easily be integrated into the process since polysilicon is used as a gate material for basic CMOS processing.
    Type: Grant
    Filed: November 9, 2004
    Date of Patent: December 12, 2006
    Assignee: LSI Logic Corporation
    Inventors: Jonathan A. Shaw, Sean Erickson, Kevin Nunn
  • Publication number: 20060128112
    Abstract: A deep n-well is formed beneath the area of an inductor coil. The use of a deep n-well lessens the parasitic capacitance by placing a diode in series with the interlayer dielectric cap. The deep n-well also reduces substrate noise. Once the n-well is implanted and annealed, a cross hatch of shallow trench isolation is patterned over the n-well. The shallow trench isolation reduces and confines the inductively coupled surface currents to small areas that are then isolated from the rest of the chip.
    Type: Application
    Filed: December 12, 2004
    Publication date: June 15, 2006
    Inventors: Sean Erickson, Jason Hudson
  • Publication number: 20060128113
    Abstract: A deep n-well is formed beneath the area of a capacitor structure. The use of a deep n-well lessens the parasitic capacitance by placing a diode in series with the interlayer dielectric cap. The deep n-well also reduces substrate noise. Once the n-well is implanted and annealed, a cross hatch of shallow trench isolation is patterned over the n-well. The shallow trench isolation reduces and confines the inductively and/or capacitively coupled surface currents to small areas that are then isolated from the rest of the chip.
    Type: Application
    Filed: October 12, 2005
    Publication date: June 15, 2006
    Inventors: Sean Erickson, Jason Hudson
  • Publication number: 20060118908
    Abstract: A method for reducing the parasitic capacitance in resistors, and a resistor design embodying this method are described. By creating a p-type or an n-type implant inside of an n-well or a p-substrate, respectively, where the n-well or p-substrate is located in a p-substrate or n-substrate, respectively, a capacitively coupled capacitor is formed in series connection with the parasitic inter-layer dielectric capacitance generated when the resistor is fabricated in the dielectric material. The depletion region formed thereby behaves as a series capacitor which reduces the overall capacitance of the assemblage. The n-well or p-substrate can be placed in electrical connection with a ground potential or brought to a chosen voltage to further increase the depletion region and reduce the capacitance of the resistor.
    Type: Application
    Filed: December 6, 2004
    Publication date: June 8, 2006
    Inventors: Sean Erickson, Jonathan Shaw, Kevin Nunn
  • Publication number: 20060097349
    Abstract: A p-type polysilicon resistor formed in the inter-level dielectric layer contains an implanted diode. A positive voltage applied to the diode modulates the depletion region of the diode and changes the absolute resistance of the p-type polysilicon resistor. This modulation occurs not only horizontally, but also vertically. The fact that the tunable resistor is a p-type polysilicon resistor means that this structure can easily be integrated into the process since polysilicon is used as a gate material for basic CMOS processing.
    Type: Application
    Filed: November 9, 2004
    Publication date: May 11, 2006
    Inventors: Jonathan Shaw, Sean Erickson, Kevin Nunn
  • Publication number: 20060089001
    Abstract: Techniques are provided for localized use of high-K dielectric material within a capacitor structure. Low-K dielectric is deposited or spun on as usual. Then, a larger area is etched back and then filled with high-K dielectric material. The high-K dielectric material is then patterned and copper routing lines are trenched in and then filled with metal. A dual damascene process may be used to connect a second metal layer using a series of vias for each metal line. In an aluminum process, an insulator layer is formed over the substrate and an aluminum layer is formed over the insulator layer. The aluminum layer is etched back to for metal lines over the insulator layer. The remaining area is filled with low-K dielectric. Then, the area between the metal lines is etched back and filled with high-K dielectric to increase the capacitance value of the structure.
    Type: Application
    Filed: October 27, 2004
    Publication date: April 27, 2006
    Inventors: Sean Erickson, Jay Fukumoto
  • Patent number: 6958541
    Abstract: A region on a substrate contains multiple transistors in parallel that share a single salicided polysilicon gate electrode. Above or below the gate electrode are formed multiple plugs of refractory material along the length of the gate electrode. The multiple plugs of refractory material electrically interconnect the gate signal line and the salicided polysilicon gate electrode. The plug material is selected to minimize the work function between it and the salicided polysilicon gate electrode.
    Type: Grant
    Filed: July 25, 2003
    Date of Patent: October 25, 2005
    Assignee: LSI Logic Corporation
    Inventors: Sean Erickson, Kevin Nunn, Norman Mause
  • Publication number: 20050121746
    Abstract: The present invention provides a diffusion resistor that is formed in the substrate. A diffusion region is formed within the substrate that contains first and second contact regions extending downward from the surface of the substrate. Third and fourth contacts are also located within the diffusion region between the first and second contacts and define a conduction channel therebetween. This contact also extends downward from the surface of the substrate. These contacts are connected to metal layers. The first and second contacts form the two ends of the diffusion resistor; the third and fourth contacts connect to N+p? diodes such that application of a voltage to these contacts forms respective depletion regions within the diffusion region. The depletion regions change in size depending on the voltage applied to their respective contact, thereby changing the resistance of the depletion resistor.
    Type: Application
    Filed: December 8, 2003
    Publication date: June 9, 2005
    Inventors: Sean Erickson, Kevin Nunn, Jonathan Shaw
  • Publication number: 20050116301
    Abstract: A voltage-controlled, variable polysilicon resistor is formed of polysilicon deposited in the first interlayer dielectric layer at the same time that polysilicon routing is created. The polysilicon resistor, which is formed of n? doped polysilicon, has three contact regions connected to the metal layers. A region at either end of the resistor is doped n+ and forms the positive and negative terminals of the resistor. A third contact region is located within the polysilicon region between the first and second contacts to form a Schottky diode such that application of a voltage to this contact forms a depletion region within the polysilicon region. The depletion region changes in size depending on the voltage applied to the third contact to change the resistance of the depletion resistor.
    Type: Application
    Filed: December 1, 2003
    Publication date: June 2, 2005
    Inventors: Jonathan Shaw, Jay Fukumoto, Sean Erickson
  • Publication number: 20050088798
    Abstract: An improved semiconductor capacitor and a method for fabricating the capacitor. The capacitor is located on a substrate having a first conductive section with a first outer plate connected to a first inner plate. A second conductive section having a second outer plate connected to a second inner plate is present in the capacitor. The second inner plate is located within a first hole in the first outer plate and the first inner plate is located within a second hole in the second outer plate such that a first distance is present between the second inner plate and the first outer plate and a second distance is present between the first inner plate and the second outer plate. Multiple layers of sections like the first conductive section and the second conductive section are stacked over each other and are connected to each other as part of the capacitor. Via connections may be used to connect the layers.
    Type: Application
    Filed: October 22, 2003
    Publication date: April 28, 2005
    Inventors: Sean Erickson, Kevin Nunn, Eric Miller
  • Publication number: 20050062586
    Abstract: The present invention provides a diffusion resistor that is formed in the substrate. A diffusion region is formed within the substrate that contains a first and second contact region. These contact regions extend downward from the surface of the substrate. A third contact is located within the diffusion region between the first and second contacts. This contact also extends downward from the surface of the substrate. These contacts are connected to metal layers. The first and second contacts form the two ends of the diffusion resistor. The third contact forms a Schottky diode such that application of a voltage to this contact forms a depletion region within the diffusion region. The depletion region changes in size depending on the voltage applied to the third contact to change the resistance of the depletion resistor.
    Type: Application
    Filed: September 23, 2003
    Publication date: March 24, 2005
    Inventors: Sean Erickson, Jonathan Shaw, Jay Fukumoto
  • Publication number: 20050017362
    Abstract: A region on a substrate contains multiple transistors in parallel that share a single salicided polysilicon gate electrode. Above or below the gate electrode are formed multiple plugs of refractory material along the length of the gate electrode. The multiple plugs of refractory material electrically interconnect the gate signal line and the salicided polysilicon gate electrode. The plug material is selected to minimize the work function between it and the salicided polysilicon gate electrode.
    Type: Application
    Filed: July 25, 2003
    Publication date: January 27, 2005
    Inventors: Sean Erickson, Kevin Nunn, Norman Mause