Patents by Inventor Sean Imtiaz Brahim

Sean Imtiaz Brahim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220223877
    Abstract: The present invention relates to a lithium ion battery cell having a cathode comprising an active material and about 1-5% by weight of single wall carbon nanotubes (SWCNT) as a conductive additive, wherein the SWCNT has an inorganic impurity content of less than 5% by weight. The LiB cathode of the present invention improves performance characteristics such as higher capacity, lower cell resistance, and retention of greater capacity with cycling of the fully assembled cell, in comparison to LiB cells using only conventional conductive carbon additive in the cathode.
    Type: Application
    Filed: March 30, 2022
    Publication date: July 14, 2022
    Inventors: Sean Imtiaz Brahim, Stefan Maat
  • Patent number: 10981794
    Abstract: The present invention is directed to a stable aqueous dispersion of carbon, wherein the carbon comprises between 75-85 wt. % activated carbon, and 15-25 wt. % CNT having a purity of at least 95 wt. %. The dispersion is free of surfactant and is stable for at least two weeks. The aqueous dispersion is useful to make an active layer for an electrode of a supercapacitor. The present invention is also directed to a supercapacitor cell having at least one electrode comprising a current collector and an active layer, wherein the active layer comprises activated carbon and high purity carbon nanotubes and is free of binder. The active layer materials are both porous and conductive in order to increase the charge storage capability and to decrease the electrode resistance. In general, the content of carbon nanotubes in the active layer is between 10 and 30 wt. % and the purity of the carbon nanotubes is at least 95 wt. %.
    Type: Grant
    Filed: August 3, 2020
    Date of Patent: April 20, 2021
    Assignee: YAZAKI CORPORATION
    Inventors: Stefan Maat, Satyabrata Raychaudhuri, Sean Imtiaz Brahim, Sanliang Zhang
  • Patent number: 10840032
    Abstract: The present invention is directed to a supercapacitor cell having at least one electrode comprising a current collector and an active layer, wherein the active layer comprises activated carbon and high purity carbon nanotubes and is free of binder. The active layer materials are both porous and conductive in order to increase the charge storage capability and to decrease the electrode resistance. In general, the content of carbon nanotubes in the active layer is between 10 and 30 wt. % and the purity of the carbon nanotubes is at least 95 wt. %.
    Type: Grant
    Filed: August 3, 2020
    Date of Patent: November 17, 2020
    Assignee: YAZAKI CORPORATION
    Inventors: Stefan Maat, Satyabrata Raychaudhuri, Sean Imtiaz Brahim, Sanliang Zhang
  • Patent number: 10392255
    Abstract: Cohesive carbon assemblies are prepared by obtaining a functionalized carbon starting material in the form of powder, particles, flakes, loose agglomerates, aqueous wet cake, or aqueous slurry, dispersing the carbon in water by mechanical agitation and/or refluxing, and substantially removing the water, typically by evaporation, whereby the cohesive assembly of carbon is formed. The method is suitable for preparing free-standing, monolithic assemblies of carbon nanotubes in the form of films, wafers, discs, fiber, or wire, having high carbon packing density and low electrical resistivity. The method is also suitable for preparing substrates coated with an adherent cohesive carbon assembly. The assemblies have various potential applications, such as electrodes or current collectors in electrochemical capacitors, fuel cells, and batteries, or as transparent conductors, conductive inks, pastes, and coatings.
    Type: Grant
    Filed: September 7, 2018
    Date of Patent: August 27, 2019
    Assignee: Yazaki Corporation
    Inventors: Leonid Grigorian, Sean Imtiaz Brahim
  • Publication number: 20190002290
    Abstract: Cohesive carbon assemblies are prepared by obtaining a functionalized carbon starting material in the form of powder, particles, flakes, loose agglomerates, aqueous wet cake, or aqueous slurry, dispersing the carbon in water by mechanical agitation and/or refluxing, and substantially removing the water, typically by evaporation, whereby the cohesive assembly of carbon is formed. The method is suitable for preparing free-standing, monolithic assemblies of carbon nanotubes in the form of films, wafers, discs, fiber, or wire, having high carbon packing density and low electrical resistivity. The method is also suitable for preparing substrates coated with an adherent cohesive carbon assembly. The assemblies have various potential applications, such as electrodes or current collectors in electrochemical capacitors, fuel cells, and batteries, or as transparent conductors, conductive inks, pastes, and coatings.
    Type: Application
    Filed: September 7, 2018
    Publication date: January 3, 2019
    Inventors: Leonid GRIGORIAN, Sean Imtiaz BRAHIM
  • Patent number: 10093544
    Abstract: Cohesive carbon assemblies are prepared by obtaining a functionalized carbon starting material in the form of powder, particles, flakes, loose agglomerates, aqueous wet cake, or aqueous slurry, dispersing the carbon in water by mechanical agitation and/or refluxing, and substantially removing the water, typically by evaporation, whereby the cohesive assembly of carbon is formed. The method is suitable for preparing free-standing, monolithic assemblies of carbon nanotubes in the form of films, wafers, discs, fiber, or wire, having high carbon packing density and low electrical resistivity. The method is also suitable for preparing substrates coated with an adherent cohesive carbon assembly. The assemblies have various potential applications, such as electrodes or current collectors in electrochemical capacitors, fuel cells, and batteries, or as transparent conductors, conductive inks, pastes, and coatings.
    Type: Grant
    Filed: August 12, 2015
    Date of Patent: October 9, 2018
    Assignee: YAZAKI CORPORATION
    Inventors: Leonid Grigorian, Sean Imtiaz Brahim
  • Patent number: 9731972
    Abstract: Cohesive carbon assemblies are prepared by obtaining a functionalized carbon starting material in the form of powder, particles, flakes, loose agglomerates, aqueous wet cake, or aqueous slurry, dispersing the carbon in water by mechanical agitation and/or refluxing, and substantially removing the water, typically by evaporation, whereby the cohesive assembly of carbon is formed. The method is suitable for preparing free-standing, monolithic assemblies of carbon nanotubes in the form of films, wafers, discs, fiber, or wire, having high carbon packing density and low electrical resistivity. The method is also suitable for preparing substrates coated with an adherent cohesive carbon assembly. The assemblies have various potential applications, such as electrodes or current collectors in electrochemical capacitors, fuel cells, and batteries, or as transparent conductors, conductive inks, pastes, and coatings.
    Type: Grant
    Filed: August 12, 2015
    Date of Patent: August 15, 2017
    Assignee: YAZAKI CORPORATION
    Inventors: Leonid Grigorian, Sean Imtiaz Brahim
  • Publication number: 20150344410
    Abstract: Cohesive carbon assemblies are prepared by obtaining a functionalized carbon starting material in the form of powder, particles, flakes, loose agglomerates, aqueous wet cake, or aqueous slurry, dispersing the carbon in water by mechanical agitation and/or refluxing, and substantially removing the water, typically by evaporation, whereby the cohesive assembly of carbon is formed. The method is suitable for preparing free-standing, monolithic assemblies of carbon nanotubes in the form of films, wafers, discs, fiber, or wire, having high carbon packing density and low electrical resistivity. The method is also suitable for preparing substrates coated with an adherent cohesive carbon assembly. The assemblies have various potential applications, such as electrodes or current collectors in electrochemical capacitors, fuel cells, and batteries, or as transparent conductors, conductive inks, pastes, and coatings.
    Type: Application
    Filed: August 12, 2015
    Publication date: December 3, 2015
    Inventors: Leonid GRIGORIAN, Sean Imtiaz BRAHIM
  • Publication number: 20150344309
    Abstract: Cohesive carbon assemblies are prepared by obtaining a functionalized carbon starting material in the form of powder, particles, flakes, loose agglomerates, aqueous wet cake, or aqueous slurry, dispersing the carbon in water by mechanical agitation and/or refluxing, and substantially removing the water, typically by evaporation, whereby the cohesive assembly of carbon is formed. The method is suitable for preparing free-standing, monolithic assemblies of carbon nanotubes in the form of films, wafers, discs, fiber, or wire, having high carbon packing density and low electrical resistivity. The method is also suitable for preparing substrates coated with an adherent cohesive carbon assembly. The assemblies have various potential applications, such as electrodes or current collectors in electrochemical capacitors, fuel cells, and batteries, or as transparent conductors, conductive inks, pastes, and coatings.
    Type: Application
    Filed: August 12, 2015
    Publication date: December 3, 2015
    Inventors: Leonid GRIGORIAN, Sean Imtiaz BRAHIM
  • Patent number: 9136536
    Abstract: Cohesive carbon assemblies are prepared by obtaining a functionalized carbon starting material in the form of powder, particles, flakes, loose agglomerates, aqueous wet cake, or aqueous slurry, dispersing the carbon in water by mechanical agitation and/or refluxing, and substantially removing the water, typically by evaporation, whereby the cohesive assembly of carbon is formed. The method is suitable for preparing free-standing, monolithic assemblies of carbon nanotubes in the form of films, wafers, discs, fiber, or wire, having high carbon packing density and low electrical resistivity. The method is also suitable for preparing substrates coated with an adherent cohesive carbon assembly. The assemblies have various potential applications, such as electrodes or current collectors in electrochemical capacitors, fuel cells, and batteries, or as transparent conductors, conductive inks, pastes, and coatings.
    Type: Grant
    Filed: August 10, 2012
    Date of Patent: September 15, 2015
    Assignee: Yazaki Corporation
    Inventors: Leonid Grigorian, Sean Imtiaz Brahim
  • Publication number: 20130342959
    Abstract: This invention relates generally to capacitors comprising organized assemblies of carbon and non-carbon compounds. This invention further relates to methods of making such organized structures. It also relates to devices containing such structures. In preferred embodiments, the organized structures of the instant invention take the form of nanorods or their aggregate forms. More preferably, a nanorod is made up of a carbon nanotube filled, coated, or both filled and coated by a non-carbon material. In particular, the present invention is directed to a capacitor electrode comprising a carbon nanotube filled with one or more non-carbon materials comprising titanium, a titanium compound, manganese, a manganese compound, cobalt, nickel, palladium, platinum, bromine, iodine, an interhalogen compound, or the combination thereof.
    Type: Application
    Filed: May 31, 2013
    Publication date: December 26, 2013
    Inventors: Leonid GRIGORIAN, Steven G. COLBERN, Sean Imtiaz BRAHIM
  • Patent number: 8454924
    Abstract: Cohesive assemblies comprising carbon are prepared by obtaining carbon in the form of powder, particles, flakes, or loose agglomerates, dispersing the carbon in a liquid halogen by mechanical mixing and/or sonication, and substantially removing the liquid halogen, typically by evaporation, whereby the cohesive assembly of carbon is formed. The method is especially suitable for preparing free-standing, monolithic assemblies of carbon nanotubes in the form of films, wafers, or discs, having high carbon packing density and low electrical resistivity. The assemblies have various potential applications, such as electrodes in batteries or supercapacitors or as electromagnetic interference shielding materials.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: June 4, 2013
    Assignees: Yazaki Corporation, Toray Industries, Inc.
    Inventors: Leonid Grigorian, Steven Colbern, Sean Imtiaz Brahim
  • Publication number: 20130040229
    Abstract: Cohesive carbon assemblies are prepared by obtaining a functionalized carbon starting material in the form of powder, particles, flakes, loose agglomerates, aqueous wet cake, or aqueous slurry, dispersing the carbon in water by mechanical agitation and/or refluxing, and substantially removing the water, typically by evaporation, whereby the cohesive assembly of carbon is formed. The method is suitable for preparing free-standing, monolithic assemblies of carbon nanotubes in the form of films, wafers, discs, fiber, or wire, having high carbon packing density and low electrical resistivity. The method is also suitable for preparing substrates coated with an adherent cohesive carbon assembly. The assemblies have various potential applications, such as electrodes or current collectors in electrochemical capacitors, fuel cells, and batteries, or as transparent conductors, conductive inks, pastes, and coatings.
    Type: Application
    Filed: August 10, 2012
    Publication date: February 14, 2013
    Inventors: Leonid GRIGORIAN, Sean Imtiaz BRAHIM
  • Patent number: 8309226
    Abstract: This invention is directed to an article comprising a transparent substrate and an electrically conductive transparent coating deposited on the transparent substrate. This invention is also directed to methods for preparing the electrically conductive transparent coating and depositing the coating on the transparent substrate. This invention is further directed to devices containing such articles. The electrically conductive transparent coating comprises carbon nanotubes filled, coated, or both filled and coated by a non-carbon material.
    Type: Grant
    Filed: July 29, 2008
    Date of Patent: November 13, 2012
    Assignee: Yazaki Corporation
    Inventors: Sean Imtiaz Brahim, Robert L. Gump, Steven G. Colbern, Leonid Grigorian
  • Publication number: 20120111093
    Abstract: This invention relates generally to gas sensors comprising organized assemblies of carbon and non-carbon compounds. The invention also relates to devices containing such gas sensors and analysis units. In preferred embodiments, the organized assemblies of the instant invention take the form of nanorods or their aggregate forms. More preferably, a nanorod is made up of a carbon nanotube filled, coated, or both filled and coated by a non-carbon material. The invention further relates to a method for detecting or quantitating an analyte gas.
    Type: Application
    Filed: January 13, 2012
    Publication date: May 10, 2012
    Inventors: Sean Imtiaz Brahim, Leonid Grigorian, Steven G. Colbern, Robert L. Gump, Fikret Nuri Kirkbir
  • Patent number: 8124419
    Abstract: This invention relates generally to gas sensors comprising organized assemblies of carbon and non-carbon compounds. The invention also relates to devices containing such gas sensors and analysis units. In preferred embodiments, the organized assemblies of the instant invention take the form of nanorods or their aggregate forms. More preferably, a nanorod is made up of a carbon nanotube filled, coated, or both filled and coated by a non-carbon material.
    Type: Grant
    Filed: April 19, 2010
    Date of Patent: February 28, 2012
    Assignee: Yazaki Corporation
    Inventors: Sean Imtiaz Brahim, Leonid Grigorian, Steven G. Colbern, Robert L. Gump, Fikret Nuri Kirkbir
  • Publication number: 20120009115
    Abstract: Cohesive assemblies comprising carbon are prepared by obtaining carbon in the form of powder, particles, flakes, or loose agglomerates, dispersing the carbon in a liquid halogen by mechanical mixing and/or sonication, and substantially removing the liquid halogen, typically by evaporation, whereby the cohesive assembly of carbon is formed. The method is especially suitable for preparing free-standing, monolithic assemblies of carbon nanotubes in the form of films, wafers, or discs, having high carbon packing density and low electrical resistivity. The assemblies have various potential applications, such as electrodes in batteries or supercapacitors or as electromagnetic interference shielding materials.
    Type: Application
    Filed: September 2, 2011
    Publication date: January 12, 2012
    Inventors: Leonid Grigorian, Steven Colbern, Sean Imtiaz Brahim
  • Publication number: 20110188170
    Abstract: This invention relates generally to capacitors comprising organized assemblies of carbon and non-carbon compounds. This invention further relates to methods of making such organized structures. It also relates to devices containing such structures. In preferred embodiments, the organized structures of the instant invention take the form of nanorods or their aggregate forms. More preferably, a nanorod is made up of a carbon nanotube filled, coated, or both filled and coated by a non-carbon material. In particular, the present invention is directed to a capacitor electrode comprising a carbon nanotube filled with one or more non-carbon materials comprising titanium, a titanium compound, manganese, a manganese compound, cobalt, nickel, palladium, platinum, bromine, iodine, an interhalogen compound, or the combination thereof.
    Type: Application
    Filed: April 11, 2011
    Publication date: August 4, 2011
    Inventors: Leonid Grigorian, Steven G. Colbern, Sean Imtiaz Brahim
  • Publication number: 20110183139
    Abstract: This invention relates generally to organized assemblies of carbon and non-carbon compounds and methods of making such organized structures. In preferred embodiments, the organized structures of the instant invention take the form of nanorods or their aggregate forms. More preferably, a nanorod is made up of a carbon nanotube filled, coated, or both filled and coated by a non-carbon material. This invention is further drawn to the separation of single-wall carbon nanotubes. In particular, it relates to the separation of semiconducting single-wall carbon nanotubes from conducting (or metallic) single-wall carbon nanotubes. It also relates to the separation of single-wall carbon nanotubes according to their chirality and/or diameter.
    Type: Application
    Filed: March 28, 2011
    Publication date: July 28, 2011
    Inventors: Leonid Grigorian, Steven G. Colbern, Alex E. Moser, Robert L. Gump, Daniel A. Niebauer, Sean Imtiaz Brahim
  • Patent number: 7943238
    Abstract: This invention relates generally to capacitors comprising organized assemblies of carbon and non-carbon compounds. This invention further relates to methods of making such organized structures. It also relates to devices containing such structures. In preferred embodiments, the organized structures of the instant invention take the form of nanorods or their aggregate forms. More preferably, a nanorod is made up of a carbon nanotube filled, coated, or both filled and coated by a non-carbon material. In particular, the present invention is directed to a capacitor electrode comprising a carbon nanotube filled with one or more non-carbon materials comprising titanium, a titanium compound, manganese, a manganese compound, cobalt, nickel, palladium, platinum, bromine, iodine, an interhalogen compound, or the combination thereof.
    Type: Grant
    Filed: August 11, 2010
    Date of Patent: May 17, 2011
    Assignee: Yazaki Corporation
    Inventors: Leonid Grigorian, Steven G. Colbern, Sean Imtiaz Brahim