Patents by Inventor Sean M. Christian

Sean M. Christian has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160222957
    Abstract: A long stroke pumping unit includes: a tower; a counterweight assembly movable along the tower; a crown mounted atop the tower; a drum supported by the crown and rotatable relative thereto; a belt having a first end connected to the counterweight assembly, extending over the drum, and having a second end connectable to a rod string; and a linear electromagnetic motor for reciprocating the counterweight assembly along the tower. The linear electromagnetic motor includes: a traveler mounted to an exterior of the counterweight assembly; and a stator extending from a base of the tower to the crown and along a guide rail of the tower. The pumping unit further includes a sensor for detecting position of the counterweight assembly.
    Type: Application
    Filed: January 29, 2016
    Publication date: August 4, 2016
    Inventors: Clark E. ROBISON, Benson THOMAS, William Kevin HALL, Sean M. CHRISTIAN, Jeffrey John LEMBCKE
  • Publication number: 20160201664
    Abstract: A long-stroke pumping unit includes: a tower; a counterweight assembly movable along the tower; a drum connected to an upper end of the tower and rotatable relative thereto; a belt having a first end connected to the counterweight assembly, extending over the drum, and having a second end connectable to a rod string; a prime mover for reciprocating the counterweight assembly along the tower; a sensor for detecting sudden acceleration of the counterweight assembly due to failure of the rod string; at least one of: a braking system for halting free-fall of the counterweight assembly; and an arrestor system for absorbing kinetic energy of the falling counterweight assembly; and a controller in communication with the sensor and operable to activate the braking or arrestor system in response to detection of the sudden acceleration.
    Type: Application
    Filed: January 11, 2016
    Publication date: July 14, 2016
    Inventors: Clark E. ROBISON, Benson THOMAS, William C. LANE, Darius John YAKIMCHUK, Jeffrey John LEMBCKE, Bryan A. PAULET, Brandon M. CAIN, Sean M. CHRISTIAN, Paul L. SMITH
  • Publication number: 20150130468
    Abstract: A fluid monitoring apparatus includes a housing and a tracer sensor attached to an exterior of the housing. The housing has at least one flow passage for a fluid sample and a port for the tracer sensor to monitor the fluid sample in the housing. In one example, the monitoring apparatus may include a plurality of tracer sensors attached to the housing, wherein the tracer sensors are interchangeably attached to the housing. In one embodiment, the monitoring apparatus may be attached to a first well for detecting the presence of a tracer in the first well, wherein the tracer is supplied from a second well.
    Type: Application
    Filed: October 17, 2014
    Publication date: May 14, 2015
    Inventors: Sean M. CHRISTIAN, Daniel Charles BOYDE
  • Publication number: 20150134253
    Abstract: A telemetry system and method configured to communicate a wellbore parameter such as fluid composition, temperature, and pressure. In one embodiment, a plurality of tracers is stored downhole, and each of the tracers represents a different value of the wellbore parameter. After measuring the wellbore parameter, the measured value is correlated to one or more of the plurality of tracers that is equivalent to the measured value of the downhole parameter. The one or more tracers representing the measured value are then released from their respective containers to travel upstream. A sensor located upstream may detect the one or more tracers, which are then correlated back to obtain the measured value of the wellbore parameter. In another embodiment, ratiometric amounts of the tracers may be used to represent additional values of the wellbore parameter.
    Type: Application
    Filed: April 16, 2013
    Publication date: May 14, 2015
    Inventors: Lev Ring, Jeffrey John Lembcke, Dean Taylor Lehner, Francis Bostick, III, Brian Keith Drakeley, Sean M. Christian
  • Patent number: 8735803
    Abstract: A multi-channel detector assembly for downhole spectroscopy has a reference detector unit optically coupled to a reference channel of a source and has a measurement detector unit optically coupled to a measurement channel of the source. The reference and measurement detectors detect spectral signals across a spectral range of wavelengths from the reference and measurement channels. Conversion circuitry converts the detected spectral signals into reference signals and measurement signals, and control circuitry processes the reference and measurements signals based on a form of encoding used by the source. Then, the control circuitry can control the output of spectral signals from the source based on the processed signals or scale the measurement signal to correct for source fluctuations or changes in environmental conditions.
    Type: Grant
    Filed: November 6, 2009
    Date of Patent: May 27, 2014
    Assignee: Precision Energy Services, Inc
    Inventors: Jess V. Ford, Thomas Blankinship, Bryan W. Kasperski, Margaret C. Waid, Sean M. Christian
  • Patent number: 8542353
    Abstract: A refractive index sensor having one or more sources, an adaptive optical element or scanner, imaging optics, a sensing optic, and one or more detectors. The scanner impinges a signal from the source into the sensing optic and onto a sensor-sample interface at sequential angles of incidence. The detector response increases dramatically to signals reflected from the interface at corresponding sequential angles of reflection equal to or greater than a critical angle. The refractive index sensor also uses an input lens between the scanner and the sensing optic and uses an output lens between the sensing optic and the detector. A processor controls the sensor and can determine index of refraction of the fluid sample based on the detector response and scan rate. The sensor can be used in several operational environments from a laboratory to a downhole tool, such as a formation tester to determine properties in a borehole environment.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: September 24, 2013
    Assignee: Precision Energy Services, Inc.
    Inventors: Sean M. Christian, Jess V. Ford, Bryan Statt, Thomas Blankinship, Dennis Roessler, Christopher Cotton, Bryan W. Kasperski, Margaret C. Waid
  • Patent number: 8536516
    Abstract: A multi-channel source assembly for downhole spectroscopy has individual sources that generate optical signals across a spectral range of wavelengths. A combining assembly optically combines the generated signals into a combined signal and a routing assembly that splits the combined signal into a reference channel and a measurement channel. Control circuitry electrically coupled to the sources modulates each of the sources at unique or independent frequencies during operation.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: September 17, 2013
    Assignee: Precision Energy Services, Inc.
    Inventors: Jess V. Ford, Thomas Blankinship, Bryan W. Kasperski, Margaret C. Waid, Sean M. Christian
  • Publication number: 20130175438
    Abstract: Detector assembly for downhole spectroscopy includes a near-infra-red quaternary photodiode that can operate at high temperatures without cooling it to the standard operation temperature range of the photodiode. High temperature operation of the photodiode right shifts the detector assembly's responsivity curve to include wavelengths of up to 2400-nm. The photodiode has manageable dark current at temperatures even at 200° C., and it can be packaged using high temperature construction. The photodiode is operated in photovoltaic mode at high temperatures but can be operated at photoconductive mode at lower temperatures. At least partial cooling can be provided above a predetermined temperature.
    Type: Application
    Filed: May 23, 2011
    Publication date: July 11, 2013
    Applicant: PRECISION ENERGY SERVICES, INC.
    Inventors: Jess V. Ford, Bryan W. Kasperski, Sean M. Christian, Tom Haslett, Dave Demmer, Joseph Dallas, Dave Winick
  • Patent number: 8436296
    Abstract: A downhole fluid analysis tool has a tool housing and a fluid analysis device. The tool housing is deployable downhole and has at least one flow passage for a fluid sample. The fluid analysis device is disposed in the tool housing relative to the flow passage. Inside the device, one or more sources generate a combined input electromagnetic signal across a spectrum of wavelengths, and a routing assembly routes generated signals into the reference and measurement signals. At least one wheel having a plurality of filters is rotated to selectively interpose one or more of the filters in the paths of the reference and measurement signals.
    Type: Grant
    Filed: November 6, 2009
    Date of Patent: May 7, 2013
    Assignee: Precision Energy Services, Inc.
    Inventors: Jess V. Ford, Sean M. Christian, Dennis Roessler, Bryan W. Kasperski, Margaret C. Waid
  • Patent number: 8411262
    Abstract: A downhole fluid analysis tool has a housing and a flow passage for downhole fluid. A device disposed in the tool housing relative to the flow passage has a one or more sources, one or more sensing optics, one or more detectors, and control circuitry. The source generates an input signal. The sensing optic has a refractive index (RI) higher than crude oil and other expected constituents. A sensing surface of the optic optically coupled to the source interfaces with a downhole fluid. When the variable RI of the downhole fluid reaches a defined relationship to the optic's RI, the input signal interacting with the sensing surface experiences total internal reflection, and the reflected signal from the sensing surface remains in the sensing optic and reflects to a detector. The control circuitry monitors the detector's response and indicates gas break out if the response is above a threshold.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: April 2, 2013
    Assignee: Precision Energy Services, Inc.
    Inventors: Jess V. Ford, Sean M. Christian, Bryan W. Kasperski, Tom Haslett, Dave Demmer, Margaret C. Waid, Mike Yuratich
  • Publication number: 20130020480
    Abstract: A multi-channel source assembly for downhole spectroscopy has individual sources that generate optical signals across a spectral range of wavelengths. A combining assembly optically combines the generated signals into a combined signal and a routing assembly that splits the combined signal into a reference channel and a measurement channel. Control circuitry electrically coupled to the sources modulates each of the sources at unique or independent frequencies during operation.
    Type: Application
    Filed: April 20, 2012
    Publication date: January 24, 2013
    Inventors: Jess V. Ford, Thomas Blankinship, Bryan W. Kasperski, Margaret C. Waid, Sean M. Christian
  • Publication number: 20120298850
    Abstract: Detector assembly for downhole spectroscopy includes a near-infra-red quaternary photodiode that can operate at high temperatures without cooling it to the standard operation temperature range of the photodiode. High temperature operation of the photodiode right shifts the detector assembly's responsivity curve to include wavelengths of up to 2400-nm. The photodiode has manageable dark current at temperatures even at 200° C., and it can be packaged using high temperature construction. The photodiode is operated in photovoltaic mode at high temperatures but can be operated at photoconductive mode at lower temperatures. At least partial cooling can be provided above a predetermined temperature.
    Type: Application
    Filed: May 23, 2011
    Publication date: November 29, 2012
    Applicant: PRECISION ENERGY SERVICES, INC.
    Inventors: Jess V. Ford, Bryan W. Kasperski, Sean M. Christian, Tom Haslett, Dave Demmer, Joseph Dallas, Dave Winick
  • Patent number: 8164050
    Abstract: A multi-channel source assembly for downhole spectroscopy has individual sources that generate optical signals across a spectral range of wavelengths. A combining assembly optically combines the generated signals into a combined signal and a routing assembly that splits the combined signal into a reference channel and a measurement channel. Control circuitry electrically coupled to the sources modulates each of the sources at unique or independent frequencies during operation.
    Type: Grant
    Filed: November 6, 2009
    Date of Patent: April 24, 2012
    Assignee: Precision Energy Services, Inc.
    Inventors: Jess V. Ford, Thomas Blankinship, Bryan W. Kasperski, Margaret C. Waid, Sean M. Christian
  • Publication number: 20120081699
    Abstract: A downhole fluid analysis tool has a housing and a flow passage for downhole fluid. A device disposed in the tool housing relative to the flow passage has a one or more sources, one or more sensing optics, one or more detectors, and control circuitry. The source generates an input signal. The sensing optic has a refractive index (RI) higher than crude oil and other expected constituents. A sensing surface of the optic optically coupled to the source interfaces with a downhole fluid. When the variable RI of the downhole fluid reaches a defined relationship to the optic's RI, the input signal interacting with the sensing surface experiences total internal reflection, and the reflected signal from the sensing surface remains in the sensing optic and reflects to a detector. The control circuitry monitors the detector's response and indicates gas break out if the response is above a threshold.
    Type: Application
    Filed: September 30, 2010
    Publication date: April 5, 2012
    Applicant: PRECISION ENERGY SERVICES, INC.
    Inventors: Jess V. Ford, Sean M. Christian, Bryan W. Kasperski, Tom Haslett, Dave Demmer, Margaret C. Waid, Mike Yuratich
  • Publication number: 20120081698
    Abstract: A refractive index sensor having one or more sources, an adaptive optical element or scanner, imaging optics, a sensing optic, and one or more detectors. The scanner impinges a signal from the source into the sensing optic and onto a sensor-sample interface at sequential angles of incidence. The detector response increases dramatically to signals reflected from the interface at corresponding sequential angles of reflection equal to or greater than a critical angle. The refractive index sensor also uses an input lens between the scanner and the sensing optic and uses an output lens between the sensing optic and the detector. A processor controls the sensor and can determine index of refraction of the fluid sample based on the detector response and scan rate. The sensor can be used in several operational environments from a laboratory to a downhole tool, such as a formation tester to determine properties in a borehole environment.
    Type: Application
    Filed: September 30, 2010
    Publication date: April 5, 2012
    Applicant: PRECISION ENERGY SERVICES, INC.
    Inventors: Sean M. Christian, Jess V. Ford, Bryan Statt, Thomas Blankinship, Dennis Roessler, Christopher Cotton, Bryan W. Kasperski, Margaret C. Waid
  • Patent number: 7948620
    Abstract: An analysis system, tool, and method for performing downhole fluid analysis, such as within a wellbore. The analysis system, tool, and method provide for a tool including a spectroscope for use in downhole fluid analysis which utilizes an adaptive optical element such as a Micro Mirror Array (MMA) and two distinct light channels and detectors to provide real-time scaling or normalization.
    Type: Grant
    Filed: May 26, 2010
    Date of Patent: May 24, 2011
    Assignee: Precision Energy Services, Inc.
    Inventors: Sean M. Christian, Jess V. Ford, Mike Ponstingl, Anthony Johnson, Sven Krugor, Margaret C. Waid, Bryan Kasperski, Enrique Prati
  • Publication number: 20110108720
    Abstract: A multi-channel detector assembly for downhole spectroscopy has a reference detector unit optically coupled to a reference channel of a source and has a measurement detector unit optically coupled to a measurement channel of the source. The reference and measurement detectors detect spectral signals across a spectral range of wavelengths from the reference and measurement channels. Conversion circuitry converts the detected spectral signals into reference signals and measurement signals, and control circuitry processes the reference and measurements signals based on a form of encoding used by the source. Then, the control circuitry can control the output of spectral signals from the source based on the processed signals or scale the measurement signal to correct for source fluctuations or changes in environmental conditions.
    Type: Application
    Filed: November 6, 2009
    Publication date: May 12, 2011
    Applicant: PRECISION ENERGY SERVICES, INC.
    Inventors: Jess V. Ford, Thomas Blankinship, Bryan W. Kasperski, Margaret C. Waid, Sean M. Christian
  • Publication number: 20110108721
    Abstract: A downhole fluid analysis tool has a tool housing and a fluid analysis device. The tool housing is deployable downhole and has at least one flow passage for a fluid sample. The fluid analysis device is disposed in the tool housing relative to the flow passage. Inside the device, one or more sources generate a combined input electromagnetic signal across a spectrum of wavelengths, and a routing assembly routes generated signals into the reference and measurement signals. At least one wheel having a plurality of filters is rotated to selectively interpose one or more of the filters in the paths of the reference and measurement signals.
    Type: Application
    Filed: November 6, 2009
    Publication date: May 12, 2011
    Applicant: Precision Energy Services, Inc.
    Inventors: Jess V. Ford, Sean M. Christian, Dennis Roessler, Bryan W. Kasperski, Margaret C. Waid
  • Publication number: 20110108719
    Abstract: A multi-channel source assembly for downhole spectroscopy has individual sources that generate optical signals across a spectral range of wavelengths. A combining assembly optically combines the generated signals into a combined signal and a routing assembly that splits the combined signal into a reference channel and a measurement channel. Control circuitry electrically coupled to the sources modulates each of the sources at unique or independent frequencies during operation.
    Type: Application
    Filed: November 6, 2009
    Publication date: May 12, 2011
    Applicant: PRECISION ENERGY SERVICES, INC.
    Inventors: Jess V. Ford, Thomas Blankinship, Bryan W. Kasperski, Margaret C. Waid, Sean M. Christian
  • Publication number: 20100231905
    Abstract: An analysis system, tool, and method for performing downhole fluid analysis, such as within a wellbore. The analysis system, tool, and method provide for a tool including a spectroscope for use in downhole fluid analysis which utilizes an adaptive optical element such as a Micro Mirror Array (MMA) and two distinct light channels and detectors to provide real-time scaling or normalization.
    Type: Application
    Filed: May 26, 2010
    Publication date: September 16, 2010
    Inventors: Sean M. Christian, Jess V. Ford, Mike Ponstingl, Anthony Johnson, Sven Krugor, Margaret C. Waid, Bryan Kasperski, Enrique Prati