Patents by Inventor Sean P. Madden

Sean P. Madden has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220249057
    Abstract: A method of imaging a vessel with a catheter includes positioning an imaging tip in a reinforced terminal section of an outer sheath of the catheter, inserting the catheter into a vessel, and performing near infrared spectroscopy of the vessel by retracting the imaging tip to a retracted position proximally spaced from the reinforced terminal section of the outer sheath, transmitting near infrared light from the imaging tip to the vessel wall via the outer sheath, and collecting near infrared light from the vessel wall at the imaging tip via the outer sheath. Transmitting and collecting may be performed after retracting the cable and while the imaging tip is rotated and translated proximally from the retracted position along the outer sheath. Ultrasound energy may be transmitted to the vessel from a transducer on the imaging tip and received from the vessel at the transducer.
    Type: Application
    Filed: April 20, 2022
    Publication date: August 11, 2022
    Inventors: David Barone, Kathleen DeRosa, Sean P. Madden, John N. Beck
  • Publication number: 20220218307
    Abstract: An intraluminal imaging catheter comprises an outer sheath of material that is efficiently transmissive of near infrared light, a guidewire lumen section extending distally from a distal end of the outer sheath, a terminal length section of the outer sheath extending proximally from the guidewire lumen section, a cable longitudinally and rotatably disposed lengthwise within the outer sheath and having an imaging tip located at its distal end including optical components for transmitting and receiving near infrared light, wherein the cable is longitudinally extendable to position the imaging tip at the terminal length section of the outer sheath, and reinforcement means for structurally reinforcing the terminal length section of the outer sheath against transverse bending or kinking.
    Type: Application
    Filed: March 29, 2022
    Publication date: July 14, 2022
    Inventors: David Barone, Kathleen DeRosa, Sean P. Madden
  • Patent number: 11331074
    Abstract: A method of imaging a vessel with a catheter includes positioning an imaging tip in a reinforced terminal section of an outer sheath of the catheter, inserting the catheter into a vessel, and performing near infrared spectroscopy of the vessel by retracting the imaging tip to a retracted position proximally spaced from the reinforced terminal section of the outer sheath, transmitting near infrared light from the imaging tip to the vessel wall via the outer sheath, and collecting near infrared light from the vessel wall at the imaging tip via the outer sheath. Transmitting and collecting may be performed after retracting the cable and while the imaging tip is rotated and translated proximally from the retracted position along the outer sheath. Ultrasound energy may be transmitted to the vessel from a transducer on the imaging tip and received from the vessel at the transducer.
    Type: Grant
    Filed: September 14, 2018
    Date of Patent: May 17, 2022
    Assignee: INFRAREDX, INC.
    Inventors: David Barone, Kathleen DeRosa, Sean P. Madden, John N. Beck
  • Patent number: 11284860
    Abstract: An intraluminal imaging catheter comprises an outer sheath of material that is efficiently transmissive of near infrared light, a guidewire lumen section extending distally from a distal end of the outer sheath, a terminal length section of the outer sheath extending proximally from the guidewire lumen section, a cable longitudinally and rotatably disposed lengthwise within the outer sheath and having an imaging tip located at its distal end including optical components for transmitting and receiving near infrared light, wherein the cable is longitudinally extendable to position the imaging tip at the terminal length section of the outer sheath, and reinforcement means for structurally reinforcing the terminal length section of the outer sheath against transverse bending or kinking.
    Type: Grant
    Filed: September 14, 2018
    Date of Patent: March 29, 2022
    Assignee: INFRAREDX, INC.
    Inventors: David Barone, Kathleen DeRosa, Sean P. Madden
  • Publication number: 20210228083
    Abstract: Disclosed techniques include skin diagnostics using optical signatures. A plurality of optical excitation light wavelength bands is scanned on a material sample, wherein the material sample exhibits optical spectral characteristics along the light wavelength spectrum. Excitation response wavelengths emitted by the material sample are captured in response to the plurality of optical excitation light wavelength bands, wherein the capturing is accomplished using an imaging sensor. Output values of a plurality of pixels of an image from the imaging sensor are measured, wherein the image represents excitation response wavelengths captured by the imaging sensor, wherein the measuring detects optical spectral characteristics of the material sample, and wherein the optical spectral characteristics are in response to the plurality of optical excitation light wavelength bands.
    Type: Application
    Filed: January 22, 2021
    Publication date: July 29, 2021
    Applicant: Precision Healing, Inc.
    Inventors: David B. Strasfeld, Ira M. Herman, W. David Lee, Ryan Daniel Williams, Sean P. Madden
  • Publication number: 20210231566
    Abstract: Disclosed techniques include exudate analysis using optical signatures. Access to a tissue exudate sample is obtained, wherein the tissue exudate sample contains one or more analytes representing a state of the tissue. The one or more analytes are isolated from the exudate sample on a substrate. The exudate is transferred from the substrate to an immunoassay. The immunoassay is illuminated with photons, wherein the illuminating comprises a controlled photon exposure. The controlled photon exposure comprises ambient lighting and/or one or more fluorescence excitation light wavelength bands. Light emanating from the immunoassay is imaged, wherein the imaging captures intensities of light wavelengths across the light wavelength spectrum. The imaging captures reflected light and fluorescent emanating light. A signature for the one or more analytes is generated, based on analysis of the intensities that were imaged. The signature expresses a magnitude for each of the one or more analytes.
    Type: Application
    Filed: January 22, 2021
    Publication date: July 29, 2021
    Applicant: Precision Healing, Inc.
    Inventors: Ryan Daniel Williams, Ira M. Herman, W David Lee, David B. Strasfeld, Sean P. Madden
  • Patent number: 10776654
    Abstract: Methods, devices and systems, including computer-implemented methods for building a lipid core plaque (LCP) cap collagen structural integrity classifier are described. The blood vessel wall is illuminated with near-infrared light. Reflected near-infrared light from the blood vessel wall is received. A reflectance spectrum based on the reflected near-infrared light from the blood vessel wall is determined. Whether the reflectance spectrum is indicative of the presence of an LCP is determined. Collagen structural integrity indicator data associated with the blood vessel wall are determined. The LCP cap collagen structural integrity classifier is generated based on the reflectance spectrum and the collagen structural integrity indicator data.
    Type: Grant
    Filed: March 4, 2016
    Date of Patent: September 15, 2020
    Assignee: InfraReDx, Inc.
    Inventors: Sean P. Madden, Joel S. Raichlen
  • Publication number: 20190082965
    Abstract: An intraluminal imaging catheter comprises an outer sheath of material that is efficiently transmissive of near infrared light, a guidewire lumen section extending distally from a distal end of the outer sheath, a terminal length section of the outer sheath extending proximally from the guidewire lumen section, a cable longitudinally and rotatably disposed lengthwise within the outer sheath and having an imaging tip located at its distal end including optical components for transmitting and receiving near infrared light, wherein the cable is longitudinally extendable to position the imaging tip at the terminal length section of the outer sheath, and reinforcement means for structurally reinforcing the terminal length section of the outer sheath against transverse bending or kinking.
    Type: Application
    Filed: September 14, 2018
    Publication date: March 21, 2019
    Inventors: David Barone, Kathleen DeRosa, Sean P. Madden
  • Publication number: 20190083062
    Abstract: A method of imaging a vessel with a catheter includes positioning an imaging tip in a reinforced terminal section of an outer sheath of the catheter, inserting the catheter into a vessel, and performing near infrared spectroscopy of the vessel by retracting the imaging tip to a retracted position proximally spaced from the reinforced terminal section of the outer sheath, transmitting near infrared light from the imaging tip to the vessel wall via the outer sheath, and collecting near infrared light from the vessel wall at the imaging tip via the outer sheath. Transmitting and collecting may be performed after retracting the cable and while the imaging tip is rotated and translated proximally from the retracted position along the outer sheath. Ultrasound energy may be transmitted to the vessel from a transducer on the imaging tip and received from the vessel at the transducer.
    Type: Application
    Filed: September 14, 2018
    Publication date: March 21, 2019
    Inventors: David Barone, Kathleen DeRosa, Sean P. Madden, John N. Beck
  • Patent number: 9918643
    Abstract: Described are methods, systems, and apparatus, including computer program products for examining a blood vessel wall. The blood vessel wall is illuminated with near-infrared light. Reflected near-infrared light from the blood vessel wall is received. A reflectance spectrum based on the reflected near-infrared light from the blood vessel wall is determined. Whether the reflectance spectrum is indicative of a presence of a lipid core plaque (LCP) by applying an LCP classifier to the reflectance spectrum is determined. A thickness of an LCP cap is determined by applying an LCP cap thickness classifier to the reflectance spectrum if the reflectance spectrum is indicative of the presence of the LCP. Indicia of the thickness of the LCP cap are displayed.
    Type: Grant
    Filed: February 13, 2015
    Date of Patent: March 20, 2018
    Assignee: InfraReDx, Inc.
    Inventors: Sean P. Madden, Joel S. Raichlen
  • Publication number: 20160267360
    Abstract: Methods, devices and systems, including computer-implemented methods for building a lipid core plaque (LCP) cap collagen structural integrity classifier are described. The blood vessel wall is illuminated with near-infrared light. Reflected near-infrared light from the blood vessel wall is received. A reflectance spectrum based on the reflected near-infrared light from the blood vessel wall is determined. Whether the reflectance spectrum is indicative of the presence of an LCP is determined. Collagen structural integrity indicator data associated with the blood vessel wall are determined. The LCP cap collagen structural integrity classifier is generated based on the reflectance spectrum and the collagen structural integrity indicator data.
    Type: Application
    Filed: March 4, 2016
    Publication date: September 15, 2016
    Inventors: Sean P. Madden, Joel S. Raichlen
  • Publication number: 20150150461
    Abstract: Described are methods, systems, and apparatus, including computer program products for examining a blood vessel wall. The blood vessel wall is illuminated with near-infrared light. Reflected near-infrared light from the blood vessel wall is received. A reflectance spectrum based on the reflected near-infrared light from the blood vessel wall is determined. Whether the reflectance spectrum is indicative of a presence of a lipid core plaque (LCP) by applying an LCP classifier to the reflectance spectrum is determined. A thickness of an LCP cap is determined by applying an LCP cap thickness classifier to the reflectance spectrum if the reflectance spectrum is indicative of the presence of the LCP. Indicia of the thickness of the LCP cap are displayed.
    Type: Application
    Filed: February 13, 2015
    Publication date: June 4, 2015
    Inventors: Sean P. Madden, Joel S. Raichlen
  • Patent number: 8958867
    Abstract: Described are methods, systems, and apparatus, including computer program products for examining a blood vessel wall. The blood vessel wall is illuminated with near-infrared light. Reflected near-infrared light from the blood vessel wall is received. A reflectance spectrum based on the reflected near-infrared light from the blood vessel wall is determined. Whether the reflectance spectrum is indicative of a presence of a lipid core plaque (LCP) by applying an LCP classifier to the reflectance spectrum is determined. A thickness of an LCP cap is determined by applying an LCP cap thickness classifier to the reflectance spectrum if the reflectance spectrum is indicative of the presence of the LCP. Indicia of the thickness of the LCP cap are displayed.
    Type: Grant
    Filed: August 29, 2011
    Date of Patent: February 17, 2015
    Assignee: InfraReDx, Inc.
    Inventors: Sean P. Madden, Joel S. Raichlen
  • Publication number: 20130053698
    Abstract: Described are methods, systems, and apparatus, including computer program products for examining a blood vessel wall. The blood vessel wall is illuminated with near-infrared light. Reflected near-infrared light from the blood vessel wall is received. A reflectance spectrum based on the reflected near-infrared light from the blood vessel wall is determined. Whether the reflectance spectrum is indicative of a presence of a lipid core plaque (LCP) by applying an LCP classifier to the reflectance spectrum is determined. A thickness of an LCP cap is determined by applying an LCP cap thickness classifier to the reflectance spectrum if the reflectance spectrum is indicative of the presence of the LCP. Indicia of the thickness of the LCP cap are displayed.
    Type: Application
    Filed: August 29, 2011
    Publication date: February 28, 2013
    Applicant: InfraReDx, Inc.
    Inventors: Sean P. Madden, Joel S. Raichlen
  • Patent number: 7942097
    Abstract: A slapper detonator which integrally incorporates an optical wavequide structure for determining whether there has been degradation of the explosive in the explosive device that is to be initiated by the detonator. Embodiments of this invention take advantage of the barrel-like character of a typical slapper detonator design. The barrel assembly, being in direct contact with the energetic material, incorporates an optical diagnostic device into the barrel assembly whereby one can monitor the state of the explosive material. Such monitoring can be beneficial because the chemical degradation of the explosive plays an important in achieving proper functioning of a detonator/initiator device.
    Type: Grant
    Filed: March 4, 2009
    Date of Patent: May 17, 2011
    Assignee: Sandia Corporation
    Inventors: M. Kathleen Alam, Randal L. Schmitt, Eric J. Welle, Sean P. Madden