Patents by Inventor Sean P. Selover

Sean P. Selover has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9161786
    Abstract: Minimally invasive methods and devices for introducing a spinal fixation element into a surgical site in a patient's spinal column are provided. In general, the method involves advancing a spinal fixation element in a first, lengthwise orientation along a pathway extending from a minimally invasive percutaneous incision to a spinal anchor site. As the spinal fixation element approaches the spinal anchor site, the fixation element can be manipulated to extend in a second orientation, which is preferably substantially transverse to the first orientation, to position the fixation element in relation to one or more spinal anchors.
    Type: Grant
    Filed: April 11, 2014
    Date of Patent: October 20, 2015
    Assignee: DePuy Synthes Products, Inc.
    Inventors: David Greg Anderson, Christopher W. Sicvol, George Joseph Ross, Sean P. Selover, Ramon Alberto Ruberte
  • Patent number: 9129054
    Abstract: Various systems and methods are provided for surgical and interventional planning, support, post-operative follow-up, and functional recovery tracking. In general, a patient can be tracked throughout medical treatment including through initial onset of symptoms, diagnosis, non-surgical treatment, surgical treatment, and recovery from the surgical treatment. In one embodiment, a patient and one or more medical professionals involved with treating the patient can electronically access a comprehensive treatment planning, support, and review system. The system can provide recommendations regarding diagnosis, non-surgical treatment, surgical treatment, and recovery from the surgical treatment based on data gathered from the patient and the medical professional(s).
    Type: Grant
    Filed: September 19, 2013
    Date of Patent: September 8, 2015
    Assignee: DePuy Synthes Products, Inc.
    Inventors: Namal Nawana, William C. Horton, Max Reinhardt, Jonathan Bellas, Cody Cranson, Jennifer DiPietro, Mary Louise Fowler, William J. Frasier, John Paul Griffin, Mark T. Hall, David D. Konieczynski, Michelle LeClerc, Thomas Martin, Christopher Nordstrom, Michael O'Neil, James Paiva, Matthew Parsons, Nicholas Pavento, Douglas Raymond, James J. Roveda, Sean P. Selover, Hassan A. Serhan, Michael A. Slivka, Robert E. Sommerich
  • Patent number: 9125587
    Abstract: The present disclosure relates to methods and devices for surgically manipulating tissue. In general, the methods and devices can include an elongate retractor shaft having a distal retractor tip that is configured to manipulate tissue, for example the tip can be configured to separate muscle and nerve fibers surrounding a vertebra. The elongate retractor shaft can include an illumination source such that at least a portion of the surgical field is illuminated by the device when the device is used in the body. A sensor can also or alternatively be included on the elongate retractor shaft, for example on the blunt retraction tip, such that the sensor can monitor physiological parameters of the tissue in or adjacent to the surgical field.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: September 8, 2015
    Assignee: DePuy Synthes Products, Inc.
    Inventors: John Riley Hawkins, Nicholas Pavento, Sean P. Selover, Michele LeClerc
  • Patent number: 8920425
    Abstract: A medical inserter tool is provided for introducing medical implants into a surgical site, preferably using minimally invasive techniques. The inserter tool can have a variety of configurations, but in general, the inserter tool should be effective to engage and manipulate the implant into two or more positions. In an exemplary embodiment, the tool includes an elongate shaft having proximal and distal ends and defining a longitudinal axis extending therebetween, and a pivoting element that is coupled to the distal end of the shaft and that is adapted to engage a spinal implant. In use, the pivoting element is movable between first and second positions to allow an implant to be introduced through a percutaneous access device in a lengthwise orientation, and to be manipulated subcutaneously to be positioned in a desired orientation.
    Type: Grant
    Filed: December 5, 2012
    Date of Patent: December 30, 2014
    Assignee: DePuy Synthes Products, LLC
    Inventors: Richard C. Techiera, Sean P. Selover
  • Publication number: 20140275981
    Abstract: Methods, systems, and devices are provided for guiding surgical instruments using radio frequency (RF) technology. In general, the methods, systems, and devices can allow a trajectory, e.g., an angular approach, of a surgical instrument relative to a patient to be identified during use of the instrument in a surgical procedure being performed on the patient. The trajectory can be identified using a plurality of RF modules. The methods, systems, and devices can allow the trajectory to be compared to a predetermined trajectory so as to identify whether the trajectory matches the predetermined trajectory. A result of the matching can be communicated to a user of the instrument. Based on the result, the user can maintain the trajectory, e.g., if the trajectory matches the predetermined trajectory, or can adjust the trajectory to closer align the trajectory with the predetermined trajectory, e.g., if the trajectory does not match the predetermined trajectory.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 18, 2014
    Inventors: Sean P. Selover, Joseph Hernandez, John Riley Hawkins, John Dieselman, John Paul Griffin, Jennifer DiPietro
  • Publication number: 20140275792
    Abstract: The present disclosure relates to methods and devices for surgically manipulating tissue. In general, the methods and devices can include an elongate retractor shaft having a distal retractor tip that is configured to manipulate tissue, for example the tip can be configured to separate muscle and nerve fibers surrounding a vertebra. The elongate retractor shaft can include an illumination source such that at least a portion of the surgical field is illuminated by the device when the device is used in the body. A sensor can also or alternatively be included on the elongate retractor shaft, for example on the blunt retraction tip, such that the sensor can monitor physiological parameters of the tissue in or adjacent to the surgical field.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Inventors: John Riley Hawkins, Nicholas Pavento, Sean P. Selover, Michele LeClerc
  • Publication number: 20140222092
    Abstract: Minimally invasive methods and devices for introducing a spinal fixation element into a surgical site in a patient's spinal column are provided. In general, the method involves advancing a spinal fixation element in a first, lengthwise orientation along a pathway extending from a minimally invasive percutaneous incision to a spinal anchor site. As the spinal fixation element approaches the spinal anchor site, the fixation element can be manipulated to extend in a second orientation, which is preferably substantially transverse to the first orientation, to position the fixation element in relation to one or more spinal anchors.
    Type: Application
    Filed: April 11, 2014
    Publication date: August 7, 2014
    Applicant: DePuy Synthes Products, LLC
    Inventors: David Greg Anderson, Christopher W. Sicvol, George Joseph Ross, Sean P. Selover
  • Patent number: 8734490
    Abstract: Minimally invasive methods and devices for introducing a spinal fixation element into a surgical site in a patient's spinal column are provided. In general, the method involves advancing a spinal fixation element in a first, lengthwise orientation along a pathway extending from a minimally invasive percutaneous incision to a spinal anchor site. As the spinal fixation element approaches the spinal anchor site, the fixation element can be manipulated to extend in a second orientation, which is preferably substantially transverse to the first orientation, to position the fixation element in relation to one or more spinal anchors.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: May 27, 2014
    Assignee: DePuy Synthes Products, LLC
    Inventors: David Greg Anderson, Christopher W. Sicvol, George Joseph Ross, Sean P. Selover
  • Publication number: 20140088990
    Abstract: Various systems and methods are provided for surgical and interventional planning, support, post-operative follow-up, and functional recovery tracking. In general, a patient can be tracked throughout medical treatment including through initial onset of symptoms, diagnosis, non-surgical treatment, surgical treatment, and recovery from the surgical treatment. In one embodiment, a patient and one or more medical professionals involved with treating the patient can electronically access a comprehensive treatment planning, support, and review system. The system can provide recommendations regarding diagnosis, non-surgical treatment, surgical treatment, and recovery from the surgical treatment based on data gathered from the patient and the medical professional(s).
    Type: Application
    Filed: September 19, 2013
    Publication date: March 27, 2014
    Inventors: Namal Nawana, William C. Horton, Max Reinhardt, Jonathan Bellas, Cody Cranson, Jennifer DiPietro, Mary L. Fowler, William J. Frasier, John P. Griffin, Mark T. Hall, David D. Konieczynski, Michelle LeClerc, Thomas Martin, Christopher Nordstrom, Michael O'Neil, James Paiva, Matthew Parsons, Nicholas Pavento, Douglas Raymond, James J. Roveda, Sean P. Selover, Hassan A. Serhan, Michael A. Slivka, Robert E. Sommerich
  • Patent number: 8343160
    Abstract: A medical inserter tool is provided for introducing medical implants into a surgical site, preferably using minimally invasive techniques. The inserter tool can have a variety of configurations, but in general, the inserter tool should be effective to engage and manipulate the implant into two or more positions. In an exemplary embodiment, the tool includes an elongate shaft having proximal and distal ends and defining a longitudinal axis extending therebetween, and a pivoting element that is coupled to the distal end of the shaft and that is adapted to engage a spinal implant. In use, the pivoting element is movable between first and second positions to allow an implant to be introduced through a percutaneous access device in a lengthwise orientation, and to be manipulated subcutaneously to be positioned in a desired orientation.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: January 1, 2013
    Assignee: DePuy Spine, Inc.
    Inventors: Richard C. Techiera, Sean P. Selover
  • Patent number: 8277491
    Abstract: Minimally invasive methods and devices for introducing a spinal fixation element into a surgical site in a patient's spinal column are provided. In one embodiment, a dissection tool is provided for separating muscles along a muscle plane without causing damage to the muscles. The dissection tool can also include a lumen extending therethrough for receiving a guide wire. The tool allows the guide wire to be positioned relative to a vertebra, and once properly positioned, the tool can be removed to allow a spinal anchor to be delivered along the guide wire and implanted into the vertebra.
    Type: Grant
    Filed: March 18, 2010
    Date of Patent: October 2, 2012
    Assignee: DePuy Spine, Inc.
    Inventors: Sean P. Selover, Nancy M. Sheehy
  • Publication number: 20120078316
    Abstract: Minimally invasive methods and devices for introducing a spinal fixation element into a surgical site in a patient's spinal column are provided. In general, the method involves advancing a spinal fixation element in a first, lengthwise orientation along a pathway extending from a minimally invasive percutaneous incision to a spinal anchor site. As the spinal fixation element approaches the spinal anchor site, the fixation element can be manipulated to extend in a second orientation, which is preferably substantially transverse to the first orientation, to position the fixation element in relation to one or more spinal anchors.
    Type: Application
    Filed: December 2, 2011
    Publication date: March 29, 2012
    Applicant: DEPUY SPINE, INC.
    Inventors: David Greg Anderson, Christopher W. Sicvol, George Joseph Ross, Sean P. Selover
  • Patent number: 8105361
    Abstract: Minimally invasive methods and devices for introducing a spinal fixation element into a surgical site in a patient's spinal column are provided. In general, the method involves advancing a spinal fixation element in a first, lengthwise orientation along a pathway extending from a minimally invasive percutaneous incision to a spinal anchor site. As the spinal fixation element approaches the spinal anchor site, the fixation element can be manipulated to extend in a second orientation, which is preferably substantially transverse to the first orientation, to position the fixation element in relation to one or more spinal anchors.
    Type: Grant
    Filed: February 4, 2009
    Date of Patent: January 31, 2012
    Assignee: DePuy Spine, Inc.
    Inventors: David Greg Anderson, Christopher W. Sicvol, George Joseph Ross, Sean P. Selover, Ramon Alberto Ruberte
  • Publication number: 20100174326
    Abstract: Minimally invasive methods and devices for introducing a spinal fixation element into a surgical site in a patient's spinal column are provided. In one embodiment, a dissection tool is provided for separating muscles along a muscle plane without causing damage to the muscles. The dissection tool can also include a lumen extending therethrough for receiving a guide wire. The tool allows the guide wire to be positioned relative to a vertebra, and once properly positioned, the tool can be removed to allow a spinal anchor to be delivered along the guide wire and implanted into the vertebra.
    Type: Application
    Filed: March 18, 2010
    Publication date: July 8, 2010
    Applicant: DEPUY SPINE, INC.
    Inventors: Sean P. Selover, Nancy M. Sheehy
  • Patent number: 7708763
    Abstract: Minimally invasive methods and devices for introducing a spinal fixation element into a surgical site in a patient's spinal column are provided. In one embodiment, a dissection tool is provided for separating muscles along a muscle plane without causing damage to the muscles. The dissection tool can also include a lumen extending therethrough for receiving a guide wire. The tool allows the guide wire to be positioned relative to a vertebra, and once properly positioned, the tool can be removed to allow a spinal anchor to be delivered along the guide wire and implanted into the vertebra.
    Type: Grant
    Filed: September 30, 2004
    Date of Patent: May 4, 2010
    Assignee: DePuy Spine, Inc.
    Inventors: Sean P. Selover, Nancy M. Sheehy
  • Publication number: 20100094359
    Abstract: A medical inserter tool is provided for introducing medical implants into a surgical site, preferably using minimally invasive techniques. The inserter tool can have a variety of configurations, but in general, the inserter tool should be effective to engage and manipulate the implant into two or more positions. In an exemplary embodiment, the tool includes an elongate shaft having proximal and distal ends and defining a longitudinal axis extending therebetween, and a pivoting element that is coupled to the distal end of the shaft and that is adapted to engage a spinal implant. In use, the pivoting element is movable between first and second positions to allow an implant to be introduced through a percutaneous access device in a lengthwise orientation, and to be manipulated subcutaneously to be positioned in a desired orientation.
    Type: Application
    Filed: December 15, 2009
    Publication date: April 15, 2010
    Applicant: DEPUY SPINE, INC.
    Inventors: Richard C. Techiera, Sean P. Selover
  • Patent number: 7648507
    Abstract: A medical inserter tool is provided for introducing medical implants into a surgical site, preferably using minimally invasive techniques. The inserter tool can have a variety of configurations, but in general, the inserter tool should be effective to engage and manipulate the implant into two or more positions. In an exemplary embodiment, the tool includes an elongate shaft having proximal and distal ends and defining a longitudinal axis extending therebetween, and a pivoting element that is coupled to the distal end of the shaft and that is adapted to engage a spinal implant. In use, the pivoting element is movable between first and second positions to allow an implant to be introduced through a percutaneous access device in a lengthwise orientation, and to be manipulated subcutaneously to be positioned in a desired orientation.
    Type: Grant
    Filed: December 16, 2003
    Date of Patent: January 19, 2010
    Assignee: Depuy Acromed, Inc.
    Inventors: Richard C. Techiera, Sean P. Selover
  • Patent number: 7648506
    Abstract: A medical inserter tool is provided for introducing medical implants into a surgical site, preferably using minimally invasive techniques. The inserter tool can have a variety of configurations, but in general, the inserter tool should be effective to engage and manipulate the implant into two or more positions. In an exemplary embodiment, the tool includes an elongate shaft having proximal and distal ends and defining a longitudinal axis extending therebetween, and a pivoting element that is coupled to the distal end of the shaft and that is adapted to engage a spinal implant. In use, the pivoting element is movable between first and second positions to allow an implant to be introduced through a percutaneous access device in a lengthwise orientation, and to be manipulated subcutaneously to be positioned in a desired orientation.
    Type: Grant
    Filed: December 16, 2003
    Date of Patent: January 19, 2010
    Assignee: Depuy Acromed, Inc.
    Inventors: David McCord, Richard C. Techiera, Sean P. Selover
  • Publication number: 20090138056
    Abstract: Minimally invasive methods and devices for introducing a spinal fixation element into a surgical site in a patient's spinal column are provided. In general, the method involves advancing a spinal fixation element in a first, lengthwise orientation along a pathway extending from a minimally invasive percutaneous incision to a spinal anchor site. As the spinal fixation element approaches the spinal anchor site, the fixation element can be manipulated to extend in a second orientation, which is preferably substantially transverse to the first orientation, to position the fixation element in relation to one or more spinal anchors.
    Type: Application
    Filed: February 4, 2009
    Publication date: May 28, 2009
    Applicant: DEPUY SPINE, INC.
    Inventors: David Greg Anderson, Christopher Sicvol, George Joseph Ross, Sean P. Selover
  • Patent number: 7527638
    Abstract: Minimally invasive methods and devices for introducing a spinal fixation element into a surgical site in a patient's spinal column are provided. In general, the method involves advancing a spinal fixation element in a first, lengthwise orientation along a pathway extending from a minimally invasive percutaneous incision to a spinal anchor site. As the spinal fixation element approaches the spinal anchor site, the fixation element can be manipulated to extend in a second orientation, which is preferably substantially transverse to the first orientation, to position the fixation element in relation to one or more spinal anchors.
    Type: Grant
    Filed: December 16, 2003
    Date of Patent: May 5, 2009
    Assignee: DePuy Spine, Inc.
    Inventors: David Greg Anderson, Christopher W. Sicvol, George Joseph Ross, Sean P. Selover, Ramon Alberto Ruberte