Patents by Inventor Sean S. Josephson

Sean S. Josephson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8838254
    Abstract: This disclosure describes techniques for configuring an IMD into the exposure operating mode. Prior to a medical procedure that generates a disruptive energy field, such as an MRI scan, an electronic prescription is configured to indicate that the IMD is authorized for the medical procedure that includes a disruptive energy field. The electronic prescription includes one or more designated bits within a storage element of the IMD. When the patient in which the IMD is implanted arrives for the medical procedure, a user (such as an MRI operator) interacts with a telemetry device to determine whether the electronic prescription is configured. Upon determining that the electronic prescription is configured, the IMD transitions into the exposure operating mode designed for operation in the disruptive energy field. In this manner, the electronic prescription confirms to the user that that the IMD has been checked for suitability for operation during the medical procedure.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: September 16, 2014
    Assignee: Medtronic, Inc.
    Inventors: Lawrence C. McClure, Sandy K. Wixon, Sean S. Josephson, Michael L. Ellingson, Hyun J. Yoon
  • Publication number: 20110196447
    Abstract: This disclosure describes techniques for configuring an IMD into the exposure operating mode. Prior to a medical procedure that generates a disruptive energy field, such as an MRI scan, an electronic prescription is configured to indicate that the IMD is authorized for the medical procedure that includes a disruptive energy field. The electronic prescription includes one or more designated bits within a storage element of the IMD. When the patient in which the IMD is implanted arrives for the medical procedure, a user (such as an MRI operator) interacts with a telemetry device to determine whether the electronic prescription is configured. Upon determining that the electronic prescription is configured, the IMD transitions into the exposure operating mode designed for operation in the disruptive energy field. In this manner, the electronic prescription confirms to the user that that the IMD has been checked for suitability for operation during the medical procedure.
    Type: Application
    Filed: August 31, 2010
    Publication date: August 11, 2011
    Inventors: Lawrence C. McClure, Sandy K. Wixon, Sean S. Josephson, Michael L. Ellingson, Hyun J. Yoon
  • Publication number: 20110196450
    Abstract: This disclosure describes techniques for configuring an IMD into the exposure operating mode. Prior to a medical procedure that generates a disruptive energy field, such as an MRI scan, an electronic prescription is configured to indicate that the IMD is authorized for the medical procedure that includes a disruptive energy field. The electronic prescription includes one or more designated bits within a storage element of the IMD. When the patient in which the IMD is implanted arrives for the medical procedure, a user (such as an MRI operator) interacts with a telemetry device to determine whether the electronic prescription is configured. Upon determining that the electronic prescription is configured, the IMD transitions into the exposure operating mode designed for operation in the disruptive energy field. In this manner, the electronic prescription confirms to the user that that the IMD has been checked for suitability for operation during the medical procedure.
    Type: Application
    Filed: August 31, 2010
    Publication date: August 11, 2011
    Inventors: Lawrence C. McClure, Sandy K. Wixon, Sean S. Josephson, Michael L. Ellingson, Hyun J. Yoon
  • Patent number: 6782571
    Abstract: A patient transport system for transporting a patient from a magnetic resonance imaging system to a second imaging system includes an elongated member and first and second coupling mechanisms. The elongated member has an upper surface configured to support a patient. The first coupling mechanism is coupled to the elongated member and is configured to removably couple the elongated member to the magnetic resonance imaging system. The second coupling mechanism is coupled to the elongated member and is configured to removably couple the elongated member to a second imaging system.
    Type: Grant
    Filed: November 30, 2001
    Date of Patent: August 31, 2004
    Assignee: GE Medical Systems
    Inventors: Sean S. Josephson, Mary A. Park, Edward M. Kerwin, Jason I. Subirana
  • Patent number: 6640364
    Abstract: A pedestal for use with a patient transport system for multiple imaging systems can include a support member configured to support a patient or object of interest, an elongated planar member coupled to the support member and configured to removably couple and slidably engage an elongated cradle member, and a docking assembly coupled to the elongated planar member configured to engage the receipt of and the removal of the elongated cradle member supportable by the elongated planar member.
    Type: Grant
    Filed: November 30, 2001
    Date of Patent: November 4, 2003
    Assignee: GE Medical Systems Global Technololgy Company, LLC
    Inventors: Sean S. Josephson, Jason I. Subirana
  • Patent number: 6621413
    Abstract: A system and method of servicing a mobile magnet by wireless monitoring is provided. The mobile magnet has a sensor configured to sense a characteristic of the mobile magnet and a computer coupled to the sensor configured to receive sensor data representative of the sensed characteristic. The method includes receiving the sensor data at a remote monitoring station via a wireless communication link with the computer; determining whether the mobile magnet needs service based on the sensor data; and dispatching a service technician to the mobile magnet when the mobile magnet needs service.
    Type: Grant
    Filed: August 16, 2000
    Date of Patent: September 16, 2003
    Assignee: GE Medical Systems Global Technology Company, LLC
    Inventors: James P. Roman, Sean S. Josephson, David M. Davenport