Patents by Inventor Sean T. Nicolson

Sean T. Nicolson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9257746
    Abstract: A phased-array receiver that may be effectively implemented on a silicon substrate. A receiver includes multiple radio frequency (RF) front-ends, each configured to receive a signal with a given delay relative to the others such that the gain of the received signal is highest in a given direction. The receiver also includes a power combination network configured to accept an RF signal from each of the RF front-ends and to pass a combined RF signal to a down-conversion element, where the power distribution network includes a combination of active and passive components. Each RF front-end includes a phase shifter configured to delay the signal in accordance with the given direction and a variable amplifier configured to adjust the gain of the signal.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: February 9, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ping-Yu Chen, Brian A. Floyd, Jie-Wei Lai, Arun S. Natarajan, Sean T. Nicolson, Scott K. Reynolds, Ming-Da Tsai, Alberto Valdes-Garcia, Jing-Hong C. Zhan
  • Publication number: 20140132450
    Abstract: A phased-array receiver that may be effectively implemented on a silicon substrate. A receiver includes multiple radio frequency (RF) front-ends, each configured to receive a signal with a given delay relative to the others such that the gain of the received signal is highest in a given direction. The receiver also includes a power combination network configured to accept an RF signal from each of the RF front-ends and to pass a combined RF signal to a down-conversion element, where the power distribution network includes a combination of active and passive components. Each RF front-end includes a phase shifter configured to delay the signal in accordance with the given direction and a variable amplifier configured to adjust the gain of the signal.
    Type: Application
    Filed: December 20, 2013
    Publication date: May 15, 2014
    Applicants: MediaTek, Inc., INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ping-Yu Chen, Brian A. Floyd, Jie-Wei Lai, Arun S. Natarajan, Sean T. Nicolson, Scott K. Reynolds, Ming-Da Tsai, Alberto Valdes-Garcia, Jing-Hong C. Zhan
  • Patent number: 8618983
    Abstract: A phased-array transmitter and receiver that may be effectively implemented on a silicon substrate. The transmitter distributes to front-ends, and the receiver combines signals from front-ends, using a power distribution/combination tree that employs both passive and active elements. By monitoring the power inputs and outputs, a digital control is able to rapidly provide phase and gain correction information to the front-ends. Such a transmitter/receiver includes a plurality of radio frequency (RF) front-ends and a power splitting/combining network that includes active and passive components configured to distribute signals to/from the front-ends.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: December 31, 2013
    Assignees: International Business Machines Corporation, MediaTek Inc.
    Inventors: Ping-Yu Chen, Brian A. Floyd, Jie-Wei Lai, Arun S. Natarajan, Sean T. Nicolson, Scott K. Reynolds, Ming-Dai Tsai, Alberto Valdes-Garcia, Jing-Hong C. Zhan
  • Patent number: 8139625
    Abstract: A system-on-chip (SOC) transceiver is provided. The transceiver is configured to operate in excess of 100 GHz and comprising the following components. A quadrature oscillator is configured to generate a fundamental frequency and a second harmonic frequency and comprises at least a pair of high frequency outputs at said second harmonic frequency. At least the second harmonic frequency exceeds 100 GHz. A transmission output is coupled to one of the high frequency outputs for transmitting an output signal at the second harmonic frequency. A transmission signal transformer is coupled to the other one of the high frequency outputs and configured to generate a differential oscillator signal at the second harmonic frequency. A radio frequency input receives radio frequency signals at the transceiver from an antenna. A radio frequency signal transformer coupled to the radio frequency input is configured to generate a differential radio frequency signal at the radio frequency.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: March 20, 2012
    Inventors: Sorin P. Voinigescu, Alexandre Timonov, Sean T. Nicolson, Adrian Nachman, Ekaterina Laskin, George V. Elefthriades
  • Publication number: 20110063169
    Abstract: A phased-array transmitter and receiver that may be effectively implemented on a silicon substrate. The transmitter distributes to front-ends, and the receiver combines signals from front-ends, using a power distribution/combination tree that employs both passive and active elements. By monitoring the power inputs and outputs, a digital control is able to rapidly provide phase and gain correction information to the front-ends. Such a transmitter/receiver includes a plurality of radio frequency (RF) front-ends and a power splitting/combining network that includes active and passive components configured to distribute signals to/from the front-ends.
    Type: Application
    Filed: March 30, 2010
    Publication date: March 17, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: PING-YU CHEN, Brian A. Floyd, Jie-Wei Lai, Arun S. Natarajan, Sean T. Nicolson, Scott K. Reynolds, Ming-Dai Tsai, Alberto Valdes-Garcia, Jing-Hong C. Zhan
  • Publication number: 20110014880
    Abstract: A direct conversion radio frequency (RF) transceiver integrated circuit (IC) is provided. The IC includes a local oscillator block, a receiver block, and a transmitter block disposed on a single silicon-based integrated circuit. Each of such blocks are connected to a ground plane that includes a metal located adjacent to each of such blocks, air gaps located between each section of the metal adjacent to such blocks, each section of the metal being connected to the adjacent section of metal in the group plane at a location on the edge of the ground plan corresponding to a point substantially equidistant from the two sections of metal. A system and method is provided for implementing a direct conversion integrated circuit architecture. A clock distribution system is provided, as well as a method for radio detection and ranging (RADAR) using a Doppler RADAR transceiver system in the W-band. A method for noise isolation between blocks of an integrated circuit is also provided.
    Type: Application
    Filed: October 10, 2008
    Publication date: January 20, 2011
    Inventors: Sean T. Nicolson, Ekaterina Laskin, Sorin Petre Voinigescu
  • Publication number: 20100158084
    Abstract: A system-on-chip (SOC) transceiver is provided. The transceiver is configured to operate in excess of 100 GHz and comprising the following components. A quadrature oscillator is configured to generate a fundamental frequency and a second harmonic frequency and comprises at least a pair of high frequency outputs at said second harmonic frequency. At least the second harmonic frequency exceeds 100 GHz. A transmission output is coupled to one of the high frequency outputs for transmitting an output signal at the second harmonic frequency. A transmission signal transformer is coupled to the other one of the high frequency outputs and configured to generate a differential oscillator signal at the second harmonic frequency. A radio frequency input receives radio frequency signals at the transceiver from an antenna. A radio frequency signal transformer coupled to the radio frequency input is configured to generate a differential radio frequency signal at the radio frequency.
    Type: Application
    Filed: November 25, 2009
    Publication date: June 24, 2010
    Inventors: Sorin P. Voinigescu, Alexandre Timonov, Sean T. Nicolson, Adrian Nachman, Ekaterina Laskin, George V. Elefthriades