Patents by Inventor Sean Wagoner

Sean Wagoner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12266164
    Abstract: Methods and systems are described herein for hosting and arbitrating algorithms for the generation of structured frames of data from one or more sources of unstructured input frames. A plurality of frames may be received from a recording device and a plurality of object types to be recognized in the plurality of frames may be determined. A determination may be made of multiple machine learning models for recognizing the object types. The frames may be sequentially input into the machine learning models to obtain a plurality of sets of objects from the plurality of machine learning models and object indicators may be received from those machine learning models. A set of composite frames with the plurality of indicators corresponding to the plurality of objects may be generated, and an output stream may be generated including the set of composite frames to be played back in chronological order.
    Type: Grant
    Filed: July 12, 2024
    Date of Patent: April 1, 2025
    Assignee: Tomahawk Robotics, Inc.
    Inventors: William S. Bowman, Sean Wagoner, Andrew D. Falendysz, Matthew D. Summer, Kevin Makovy, Jeffrey S. Cooper, Brad Truesdell
  • Patent number: 12067768
    Abstract: Methods and systems are described herein for hosting and arbitrating algorithms for the generation of structured frames of data from one or more sources of unstructured input frames. A plurality of frames may be received from a recording device and a plurality of object types to be recognized in the plurality of frames may be determined. A determination may be made of multiple machine learning models for recognizing the object types. The frames may be sequentially input into the machine learning models to obtain a plurality of sets of objects from the plurality of machine learning models and object indicators may be received from those machine learning models. A set of composite frames with the plurality of indicators corresponding to the plurality of objects may be generated, and an output stream may be generated including the set of composite frames to be played back in chronological order.
    Type: Grant
    Filed: August 22, 2023
    Date of Patent: August 20, 2024
    Assignee: Tomahawk Robotics, Inc.
    Inventors: William S. Bowman, Sean Wagoner, Andrew D. Falendysz, Matthew D. Summer, Kevin Makovy, Jeffrey S. Cooper, Brad Truesdell
  • Patent number: 11854410
    Abstract: A common command and control architecture (alternatively termed herein as a “universal control architecture”) is disclosed that allows different unmanned systems, including different types of unmanned systems (e.g., air, ground, and/or maritime unmanned systems), to be controlled simultaneously through a common control device (e.g., a controller that can be an input and/or output device). The universal control architecture brings significant efficiency gains in engineering, deployment, training, maintenance, and future upgrades of unmanned systems. In addition, the disclosed common command and control architecture breaks the traditional stovepipe development involving deployment models and thus reducing hardware and software maintenance, creating a streamlined training/proficiency initiative, reducing physical space requirements for transport, and creating a scalable, more connected interoperable approach to control of unmanned systems over existing unmanned systems technology.
    Type: Grant
    Filed: January 7, 2022
    Date of Patent: December 26, 2023
    Assignee: Tomahawk Robotics
    Inventors: Matthew D. Summer, William S. Bowman, Andrew D. Falendysz, Daniel R. Hedman, Brad Truesdell, Jeffrey S Cooper, Michael E. Bowman, Sean Wagoner, Kevin Makovy
  • Patent number: 11776247
    Abstract: Methods and systems are described herein for hosting and arbitrating algorithms for the generation of structured frames of data from one or more sources of unstructured input frames. A plurality of frames may be received from a recording device and a plurality of object types to be recognized in the plurality of frames may be determined. A determination may be made of multiple machine learning models for recognizing the object types. The frames may be sequentially input into the machine learning models to obtain a plurality of sets of objects from the plurality of machine learning models and object indicators may be received from those machine learning models. A set of composite frames with the plurality of indicators corresponding to the plurality of objects may be generated, and an output stream may be generated including the set of composite frames to be played back in chronological order.
    Type: Grant
    Filed: January 7, 2022
    Date of Patent: October 3, 2023
    Assignee: Tomahawk Robotics
    Inventors: William S. Bowman, Sean Wagoner, Andrew D. Falendysz, Matthew D. Summer, Kevin Makovy, Jeffrey S. Cooper, Brad Truesdell
  • Publication number: 20230237802
    Abstract: Methods and systems are described herein for generating composite data streams. A data stream processing system may receive multiple data streams from, for example, multiple unmanned vehicles and determine, based on the type of data within each data stream, a machine learning model for each data stream for processing the type of data. Each machine learning model may receive the frames of a corresponding data stream and output indications and locations of objects within those data streams. The data stream processing system may then generate a composite data stream with indications of the detected objects.
    Type: Application
    Filed: March 23, 2022
    Publication date: July 27, 2023
    Applicant: Tomahawk Robotics
    Inventors: Andrew D. Falendysz, William S. Bowman, Matthew D. Summer, Daniel R. Hedman, Sean Wagoner
  • Publication number: 20230222783
    Abstract: Methods and systems are described herein for hosting and arbitrating algorithms for the generation of structured frames of data from one or more sources of unstructured input frames. A plurality of frames may be received from a recording device and a plurality of object types to be recognized in the plurality of frames may be determined. A determination may be made of multiple machine learning models for recognizing the object types. The frames may be sequentially input into the machine learning models to obtain a plurality of sets of objects from the plurality of machine learning models and object indicators may be received from those machine learning models. A set of composite frames with the plurality of indicators corresponding to the plurality of objects may be generated, and an output stream may be generated including the set of composite frames to be played back in chronological order.
    Type: Application
    Filed: January 7, 2022
    Publication date: July 13, 2023
    Inventors: William S. Bowman, Sean Wagoner, Andrew D. Falendysz, Matthew D. Summer, Kevin Makovy, Jeffrey S. Cooper, Brad Truesdell
  • Publication number: 20220415184
    Abstract: A common command and control architecture (alternatively termed herein as a “universal control architecture”) is disclosed that allows different unmanned systems, including different types of unmanned systems (e.g., air, ground, and/or maritime unmanned systems), to be controlled simultaneously through a common control device (e.g., a controller that can be an input and/or output device). The universal control architecture brings significant efficiency gains in engineering, deployment, training, maintenance, and future upgrades of unmanned systems. In addition, the disclosed common command and control architecture breaks the traditional stovepipe development involving deployment models and thus reducing hardware and software maintenance, creating a streamlined training/proficiency initiative, reducing physical space requirements for transport, and creating a scalable, more connected interoperable approach to control of unmanned systems over existing unmanned systems technology.
    Type: Application
    Filed: January 7, 2022
    Publication date: December 29, 2022
    Inventors: Matthew D. Summer, William S. Bowman, Andrew D. Falendysz, Daniel R. Hedman, Brad Truesdell, Jeffrey S. Cooper, Michael E. Bowman, Sean Wagoner, Kevin Makovy
  • Publication number: 20220413490
    Abstract: A common command and control architecture (alternatively termed herein as a “universal control architecture”) is disclosed that allows different unmanned systems, including different types of unmanned systems (e.g., air, ground, and/or maritime unmanned systems), to be controlled simultaneously through a common control device (e.g., a controller that can be an input and/or output device). The universal control architecture brings significant efficiency gains in engineering, deployment, training, maintenance, and future upgrades of unmanned systems. In addition, the disclosed common command and control architecture breaks the traditional stovepipe development involving deployment models and thus reducing hardware and software maintenance, creating a streamlined training/proficiency initiative, reducing physical space requirements for transport, and creating a scalable, more connected interoperable approach to control of unmanned systems over existing unmanned systems technology.
    Type: Application
    Filed: January 7, 2022
    Publication date: December 29, 2022
    Inventors: Matthew D. Summer, William S. Bowman, Andrew D. Falendysz, Daniel R. Hedman, Brad Truesdell, Jeffrey S. Cooper, Michael E. Bowman, Sean Wagoner, Kevin Makovy