Patents by Inventor Sebastian Balint Seeber
Sebastian Balint Seeber has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250105908Abstract: Methods, devices, and apparatus to adapt operating parameters for satellite signal reception and transmission by a wireless device to mitigate effects of fading due to specular reflections are described herein. The wireless device measures received signal power levels and compares characteristics of the measurements over an observation duration to at least one fading criteria to determine whether to operate in a normal or adaptive mode. While operating in the adaptive mode, the wireless device alternates between high performance mode time periods and low performance mode time periods. The wireless device indicates to a ground station associated with the satellite in which operating mode the wireless device is operating via an uplink data message transmitted during a data cycle at the start of a high or low performance mode time period. The ground station schedules data transmissions accordingly during subsequent data cycles of the high or low performance mode time periods.Type: ApplicationFiled: December 9, 2024Publication date: March 27, 2025Inventors: Dhruv KHATI, Shiva Krishna NARRA, Sudhir K. BAGHEL, Sanjeevi BALASUBRAMANIAN, Sebastian Balint SEEBER, Anjaneyulu MAGANTI, Jeremiah HSU, Venkateswara Rao MANEPALLI
-
Patent number: 12166563Abstract: Methods, devices, and apparatus to adapt operating parameters for satellite signal reception and transmission by a wireless device to mitigate effects of fading due to specular reflections are described herein. The wireless device measures received signal power levels and compares characteristics of the measurements over an observation duration to at least one fading criteria to determine whether to operate in a normal or adaptive mode. While operating in the adaptive mode, the wireless device alternates between high performance mode time periods and low performance mode time periods. The wireless device indicates to a ground station associated with the satellite in which operating mode the wireless device is operating via an uplink data message transmitted during a data cycle at the start of a high or low performance mode time period. The ground station schedules data transmissions accordingly during subsequent data cycles of the high or low performance mode time periods.Type: GrantFiled: September 28, 2023Date of Patent: December 10, 2024Assignee: Apple Inc.Inventors: Dhruv Khati, Shiva Krishna Narra, Sudhir K. Baghel, Sanjeevi Balasubramanian, Sebastian Balint Seeber, Anjaneyulu Maganti, Jeremiah Hsu, Venkateswara Rao Manepalli
-
Patent number: 12003992Abstract: Systems and methods can support identifying pairings and channel parameters in short-range wireless communications such as Bluetooth low energy interfaces. Radio frequency sensors may be positioned within an electromagnetic environment where a master wireless device and a slave wireless device share short-range wireless communications. Signals transmitted between the master wireless device and the slave wireless device can be received by the radio frequency sensors. Inter-arrival times for packets within the received signals may be identified. Statistics of the inter-arrival times can be analyzed to identify connection intervals between the master wireless device and the slave wireless device, as well as back-to-back intervals exchanged within the connection intervals. Packet header contents may be used to reconcile the estimated timing parameters and time slots. Pairings between the master wireless device and the slave wireless device may be identified and tracked along with communication channel parameters.Type: GrantFiled: May 18, 2023Date of Patent: June 4, 2024Assignee: Bastille Networks, Inc.Inventor: Sebastian Balint Seeber
-
Publication number: 20240022313Abstract: Methods, devices, and apparatus to adapt operating parameters for satellite signal reception and transmission by a wireless device to mitigate effects of fading due to specular reflections are described herein. The wireless device measures received signal power levels and compares characteristics of the measurements over an observation duration to at least one fading criteria to determine whether to operate in a normal or adaptive mode. While operating in the adaptive mode, the wireless device alternates between high performance mode time periods and low performance mode time periods. The wireless device indicates to a ground station associated with the satellite in which operating mode the wireless device is operating via an uplink data message transmitted during a data cycle at the start of a high or low performance mode time period. The ground station schedules data transmissions accordingly during subsequent data cycles of the high or low performance mode time periods.Type: ApplicationFiled: September 28, 2023Publication date: January 18, 2024Inventors: Dhruv KHATI, Shiva Krishna NARRA, Sudhir K. BAGHEL, Sanjeevi BALASUBRAMANIAN, Sebastian Balint SEEBER, Anjaneyulu MAGANTI, Jeremiah HSU, Venkateswara Rao MANEPALLI
-
Patent number: 11843443Abstract: Methods, devices, and apparatus to adapt operating parameters for satellite signal reception and transmission by a wireless device to mitigate effects of fading due to specular reflections are described herein. The wireless device measures received signal power levels and compares characteristics of the measurements over an observation duration to at least one fading criteria to determine whether to operate in a normal or adaptive mode. While operating in the adaptive mode, the wireless device alternates between high performance mode time periods and low performance mode time periods. The wireless device indicates to a ground station associated with the satellite in which operating mode the wireless device is operating via an uplink data message transmitted during a data cycle at the start of a high or low performance mode time period. The ground station schedules data transmissions accordingly during subsequent data cycles of the high or low performance mode time periods.Type: GrantFiled: April 20, 2021Date of Patent: December 12, 2023Assignee: Apple Inc.Inventors: Dhruv Khati, Shiva Krishna Narra, Sudhir K. Baghel, Sanjeevi Balasubramanian, Sebastian Balint Seeber, Anjaneyulu Maganti, Jeremiah Hsu, Venkateswara Rao Manepalli
-
Publication number: 20230292162Abstract: Systems and methods can support identifying pairings and channel parameters in short-range wireless communications such as bluetooth low energy interfaces. Radio frequency sensors may be positioned within an electromagnetic environment where a master wireless device and a slave wireless device share short-range wireless communications. Signals transmitted between the master wireless device and the slave wireless device can be received by the radio frequency sensors. Inter-arrival times for packets within the received signals may be identified. Statistics of the inter-arrival times can be analyzed to identify connection intervals between the master wireless device and the slave wireless device as well as back-to-back interval exchanged within the connection intervals. Packet header contents may be used to reconcile the estimated timing parameters and time slots. Pairings between the master wireless device and the slave wireless device may be identified and tracked along with communication channel parameters.Type: ApplicationFiled: May 18, 2023Publication date: September 14, 2023Applicant: Bastille Networks, Inc.Inventor: Sebastian Balint Seeber
-
Patent number: 11696160Abstract: Systems and methods can support identifying pairings and channel parameters in short-range wireless communications such as bluetooth low energy interfaces. Radio frequency sensors may be positioned within an electromagnetic environment where a master wireless device and a slave wireless device share short-range wireless communications. Signals transmitted between the master wireless device and the slave wireless device can be received by the radio frequency sensors. Inter-arrival times for packets within the received signals may be identified. Statistics of the inter-arrival times can be analyzed to identify connection intervals between the master wireless device and the slave wireless device as well as back-to-back interval exchanged within the connection intervals. Packet header contents may be used to reconcile the estimated timing parameters and time slots. Pairings between the master wireless device and the slave wireless device may be identified and tracked along with communication channel parameters.Type: GrantFiled: November 8, 2021Date of Patent: July 4, 2023Assignee: Bastille Networks, Inc.Inventor: Sebastian Balint Seeber
-
Publication number: 20220060918Abstract: Systems and methods can support identifying pairings and channel parameters in short-range wireless communications such as bluetooth low energy interfaces. Radio frequency sensors may be positioned within an electromagnetic environment where a master wireless device and a slave wireless device share short-range wireless communications. Signals transmitted between the master wireless device and the slave wireless device can be received by the radio frequency sensors. Inter-arrival times for packets within the received signals may be identified. Statistics of the inter-arrival times can be analyzed to identify connection intervals between the master wireless device and the slave wireless device as well as back-to-back interval exchanged within the connection intervals. Packet header contents may be used to reconcile the estimated timing parameters and time slots. Pairings between the master wireless device and the slave wireless device may be identified and tracked along with communication channel parameters.Type: ApplicationFiled: November 8, 2021Publication date: February 24, 2022Applicant: Bastille Networks, Inc.Inventor: Sebastian Balint Seeber
-
Patent number: 11202216Abstract: Systems and methods can support identifying pairings and channel parameters in short-range wireless communications such as bluetooth low energy interfaces. Radio frequency sensors may be positioned within an electromagnetic environment where a master wireless device and a slave wireless device share short-range wireless communications. Signals transmitted between the master wireless device and the slave wireless device can be received by the radio frequency sensors. Inter-arrival times for packets within the received signals may be identified. Statistics of the inter-arrival times can be analyzed to identify connection intervals between the master wireless device and the slave wireless device as well as back-to-back interval exchanged within the connection intervals. Packet header contents may be used to reconcile the estimated timing parameters and time slots. Pairings between the master wireless device and the slave wireless device may be identified and tracked along with communication channel parameters.Type: GrantFiled: February 9, 2020Date of Patent: December 14, 2021Assignee: BASTILLE NETWORKS, INC.Inventor: Sebastian Balint Seeber
-
Patent number: 11190941Abstract: Systems and methods can support identifying threats in short-range wireless communications, such as Bluetooth, using one or more radio frequency sensors to receive signals transmitted between a master device and a slave device. Packets can be identified within the received signals and designated as originating from the master device or from the slave device. The wireless interface can be identified as synchronous or asynchronous. Lengths of data may be identified for data payloads within the packets. Total aggregate data lengths may be calculated for both the master and the slave transmissions. Time slot utilization statistics can be computed. A connection type category may be determined using these wireless connection features. The connection type may be for peripherals, streaming audio, two-way headsets, object exchange, data tethering, and so forth.Type: GrantFiled: May 14, 2019Date of Patent: November 30, 2021Assignee: Bastille Networks, Inc.Inventors: Logan Michael Lamb, Sebastian Balint Seeber
-
Publication number: 20210250790Abstract: Systems and methods can support identifying pairings and channel parameters in short-range wireless communications such as bluetooth low energy interfaces. Radio frequency sensors may be positioned within an electromagnetic environment where a master wireless device and a slave wireless device share short-range wireless communications. Signals transmitted between the master wireless device and the slave wireless device can be received by the radio frequency sensors. Inter-arrival times for packets within the received signals may be identified. Statistics of the inter-arrival times can be analyzed to identify connection intervals between the master wireless device and the slave wireless device as well as back-to-back interval exchanged within the connection intervals. Packet header contents may be used to reconcile the estimated timing parameters and time slots. Pairings between the master wireless device and the slave wireless device may be identified and tracked along with communication channel parameters.Type: ApplicationFiled: February 9, 2020Publication date: August 12, 2021Applicant: Bastille Networks, Inc.Inventor: Sebastian Balint Seeber
-
Publication number: 20200367061Abstract: Systems and methods can support identifying threats in short-range wireless communications, such as Bluetooth, using one or more radio frequency sensors to receive signals transmitted between a master device and a slave device. Packets can be identified within the received signals and designated as originating from the master device or from the slave device. The wireless interface can be identified as synchronous or asynchronous. Lengths of data may be identified for data payloads within the packets. Total aggregate data lengths may be calculated for both the master and the slave transmissions. Time slot utilization statistics can be computed. A connection type category may be determined using these wireless connection features. The connection type may be for peripherals, streaming audio, two-way headsets, object exchange, data tethering, and so forth.Type: ApplicationFiled: May 14, 2019Publication date: November 19, 2020Applicant: Bastille Networks, Inc.Inventors: Logan Michael Lamb, Sebastian Balint Seeber
-
Patent number: 10705178Abstract: Systems and methods can support improved position locating of wireless devices. A suite of machine learning models may be established. Radio frequency sensors may be positioned within an electromagnetic environment where user equipment devices are serviced by a base station. The radio frequency sensors can receive wireless signals associated with communications between the user equipment devices and the base station. The suite of machine learning models may be trained using wireless signals received from user equipment devices in known positions. The trained suite of machine learning models can be applied to wireless signals received from user equipment devices in unknown positions. The trained suite of machine learning models may be used to estimate the unknown positions. The estimated positions may be refined using additional information from the user equipment devices.Type: GrantFiled: October 3, 2018Date of Patent: July 7, 2020Assignee: Bastille Networks, Inc.Inventors: Robert Baxley, Sandor Szilvasi, Luke Harwood, Roy S. Thompson, III, Sebastian Balint Seeber, Christian Sepulveda
-
Publication number: 20200142022Abstract: Systems and methods can support improved position locating of wireless devices. A suite of machine learning models may be established. Radio frequency sensors may be positioned within an electromagnetic environment where user equipment devices are serviced by a base station. The radio frequency sensors can receive wireless signals associated with communications between the user equipment devices and the base station. The suite of machine learning models may be trained using wireless signals received from user equipment devices in known positions. The trained suite of machine learning models can be applied to wireless signals received from user equipment devices in unknown positions. The trained suite of machine learning models may be used to estimate the unknown positions. The estimated positions may be refined using additional information from the user equipment devices.Type: ApplicationFiled: October 3, 2018Publication date: May 7, 2020Applicant: Bastille Networks, Inc.Inventors: Robert Baxley, Sandor Szilvasi, Luke Harwood, Roy S. Thompson, III, Sebastian Balint Seeber, Christian Sepulveda
-
Patent number: 10564251Abstract: Systems and methods can support determining a physical position of wireless devices. Radio frequency sensors may be positioned within an electromagnetic environment where user equipment devices are serviced by a base station. The radio frequency sensors can receive wireless downlink signals transmitted from the base station to the user equipment devices. Network identifiers may be extracted from the received wireless downlink signals. User equipment devices may be associated with the extracted network identifiers. Radio channel allocations may be determined for the extracted network identifiers. The radio frequency sensors can receive wireless uplink signals transmitted from the user equipment devices to the base station. Signal strength indicators from the received wireless uplink signals can be associated with the extracted network identifiers. Physical positions of the user equipment devices can be determined by analyzing the associated signal strength indicators.Type: GrantFiled: October 3, 2018Date of Patent: February 18, 2020Assignee: Bastille Networks, Inc.Inventors: Robert Baxley, Sandor Szilvasi, Luke Harwood, Roy S. Thompson, III, Sebastian Balint Seeber, Christian Sepulveda
-
Patent number: 10567948Abstract: Systems and methods can support identifying wireless devices from radio frequency sensors positioned within an electromagnetic environment where one or more user equipment devices are serviced by a base station. The radio frequency sensors can receive wireless uplink signals transmitted from the user equipment devices to the base station. Data samples can be generated from the received signals. Frequency domain samples can be computed from the data samples. The data samples can be partitioned in time and frequency to generate spectrum tiles. The spectrum tiles can be statistically aggregated in a frequency domain to reduce the quantity of data samples. A clustering algorithm may be applied to the statistically aggregated spectrum tiles. Unique instances of the user equipment devices may be identified from the clustered spectrum tiles to enumerate the instances of the user equipment devices.Type: GrantFiled: October 3, 2018Date of Patent: February 18, 2020Assignee: Bastille Networks, Inc.Inventors: Robert Baxley, Sandor Szilvasi, Luke Harwood, Roy S. Thompson, III, Sebastian Balint Seeber, Christian Sepulveda
-
Patent number: 10473749Abstract: Systems and methods can support determining the physical position of a wireless device. Radio frequency sensors may be positioned within an electromagnetic environment where user equipment devices are serviced by a base station. The radio frequency sensors can receive wireless uplink signals transmitted from the user equipment devices to the base station. Data samples can be generated from the received signals. The data samples may be partitioned in time and frequency to generate spectrum tiles. The spectrum tiles may be statistically aggregated to reduce the quantity of data samples. A clustering algorithm may be applied to the statistically aggregated spectrum tiles to determine clusters of spectrum tiles. Signal parameters associated with respective clusters of spectrum tiles may be computed. Physical locations associated with user equipment devices can be estimated from the signal parameters associated with the respective clusters of spectrum tiles.Type: GrantFiled: October 3, 2018Date of Patent: November 12, 2019Assignee: Bastille Networks, Inc.Inventors: Robert Baxley, Sandor Szilvasi, Luke Harwood, Roy S. Thompson, III, Sebastian Balint Seeber, Christian Sepulveda