Patents by Inventor Sebastian HEUNISCH

Sebastian HEUNISCH has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240134031
    Abstract: A system adaptively filters out a representation of an object from a radar frame captured by a radar device, where a maximum signal strength at zero velocity is obtained in a range bin comprising a detection of the object in range Doppler representations of a set of radar frames captured during a time period before the radar frame. A motion vector is obtained representing a determined magnitude and direction of motion of the radar device at the time when the radar frame was captured. The motion of the radar device is due to an oscillatory movement of the radar device. A range Doppler representation of the radar frame is produced and a direction vector representing a direction from the radar device to the object is determined. A radial relative velocity between the object and the radar device is determined based on the obtained motion vector and the determined direction vector.
    Type: Application
    Filed: October 8, 2023
    Publication date: April 25, 2024
    Applicant: Axis AB
    Inventors: Anders Mannesson, Mattias Simonsson, Santhosh Nadig, Johan E. Åkesson, Sebastian Heunisch, Anders Skoog
  • Patent number: 11630183
    Abstract: A method for interference reduction between radar units. The method is performed by a radar unit and comprises: receiving one or more radar frames, wherein the one or more radar frames correspond to one or more respective time intervals during which the radar unit was activated to transmit and receive signals to produce data samples of the one or more radar frames; and determining whether the one or more radar frames have a higher presence of data samples that are subject to interference from other radar units in a first half of their corresponding time intervals than in a second, later, half of their corresponding time intervals. In case the presence is higher in the first half of their corresponding time intervals, a scheduled time interval of an upcoming radar frame to be produced by the radar unit is postponed, and otherwise it is advanced.
    Type: Grant
    Filed: March 30, 2021
    Date of Patent: April 18, 2023
    Assignee: Axis AB
    Inventors: Adham Sakhnini, Andreas Glatz, Axel Landgren, Mattias Simonsson, Anders Skoog, Anders Mannesson, Sebastian Heunisch, Stefan Adalbjörnsson, Karl Nordin
  • Publication number: 20220373672
    Abstract: A method for classifying tracks in radar detections of a scene acquired by a stationary radar unit, comprises: acquiring radar detections of the scene using the static radar unit; feeding at least a portion of the radar detections into a tracker module for producing track-specific feature data indicating a specific track in the scene, feeding at least a portion of the radar detections into a scene model comprising information about scene-specific features aggregated over time, and information indicating areas in the scene with expected ghost target detections and areas with expected real target detections, wherein at least a subset of the scene-specific features is determined from the radar detections; classifying the specific track as belonging to a real target or to a ghost target by relating the specific track to a position in the scene model.
    Type: Application
    Filed: May 19, 2022
    Publication date: November 24, 2022
    Applicant: Axis AB
    Inventors: Anders MANNESSON, André NÜSSLEIN, Anton SEDIN, Aras PAPADELIS, Daniel STÅHL, David WADMARK, Sebastian HEUNISCH, Stefan ADALBJÖRNSSON
  • Publication number: 20220373669
    Abstract: A method for mapping a static scene using a stationary radar unit operative to transmit radar signals towards a scene, the stationary radar unit comprises a set of receiver antennas configured to detect radar signals from arbitrary directions, and the stationary radar unit is configured to measure target velocity in discrete velocity bins, the method comprising: continuously collecting radar signals over time to detect a static scene using the set of receiver antennas; constructing an occupancy map of the static scene using confirmed detections determined from the collected radar signals, where confirmed detections are detections with radar signal strength exceeding a detection threshold and with velocity falling in a zero velocity bin and detections with radar signal strength exceeding the detection threshold and with a non-zero velocity sufficiently low to cause spill over information in the same bin as detections falling in the zero velocity bin.
    Type: Application
    Filed: May 19, 2022
    Publication date: November 24, 2022
    Applicant: Axis AB
    Inventors: Anders MANNESSON, Anton SEDIN, Aras PAPADELIS, David WADMARK, Sebastian HEUNISCH, Stefan ADALBJÖRNSSON, Daniel STÅHL
  • Publication number: 20210349179
    Abstract: A method for interference reduction between radar units. The method is performed by a radar unit and comprises: receiving one or more radar frames, wherein the one or more radar frames correspond to one or more respective time intervals during which the radar unit was activated to transmit and receive signals to produce data samples of the one or more radar frames; and determining whether the one or more radar frames have a higher presence of data samples that are subject to interference from other radar units in a first half of their corresponding time intervals than in a second, later, half of their corresponding time intervals. In case the presence is higher in the first half of their corresponding time intervals, a scheduled time interval of an upcoming radar frame to be produced by the radar unit is postponed, and otherwise it is advanced.
    Type: Application
    Filed: March 30, 2021
    Publication date: November 11, 2021
    Applicant: Axis AB
    Inventors: Adham SAKHNINI, Andreas GLATZ, Axel LANDGREN, Mattias SIMONSSON, Anders SKOOG, Anders MANNESSON, Sebastian HEUNISCH, Stefan ADALBJÖRNSSON, Karl NORDIN