Patents by Inventor Sebastian Hoibl

Sebastian Hoibl has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220406757
    Abstract: In an embodiment a method for producing radiation-emitting semiconductor chips includes providing a semiconductor wafer, applying first contact layers on the semiconductor wafer, applying a second dielectric layer on the semiconductor wafer and the first contact layers, attaching a carrier arrangement to the semiconductor wafer, singulating the semiconductor wafer into semiconductor bodies and applying second contact layers on the semiconductor bodies, wherein the second dielectric layer is formed such that it mechanically stabilizes itself.
    Type: Application
    Filed: August 12, 2020
    Publication date: December 22, 2022
    Inventors: Alexander F. Pfeuffer, Tobias Meyer, Korbinian Perzlmaier, Thomas Schwarz, Sebastian Hoibl
  • Patent number: 11476389
    Abstract: The invention relates to a method for producing an optoelectronic semiconductor chip comprising the following steps: providing a semiconductor body (1) having a radiation-permeable surface (1a), and introducing structures (2) into the semiconductor body (1) on the radiation-permeable surface (1a), wherein the structures (2) are quasi-regular.
    Type: Grant
    Filed: September 3, 2018
    Date of Patent: October 18, 2022
    Assignee: OSRAM OLED GmbH
    Inventors: Michael Huber, Jana Sommerfeld, Martin Herz, Sebastian Hoibl, Christian Rumbolz, Albrecht Kieslich, Bernd Boehm, Georg Rossbach, Markus Broell
  • Publication number: 20210126163
    Abstract: The invention relates to a method for producing an optoelectronic semiconductor chip comprising the following steps: providing a semiconductor body (1) having a radiation-permeable surface (1a), and introducing structures (2) into the semiconductor body (1) on the radiation-permeable surface (1a), wherein the structures (2) are quasi-regular.
    Type: Application
    Filed: September 3, 2018
    Publication date: April 29, 2021
    Inventors: Michael Huber, Jana Sommerfeld, Martin Herz, Sebastian Hoibl, Christian Rumbolz, Albrecht Kieslich, Bernd Boehm, Georg Rossbach, Markus Broell
  • Patent number: 9466487
    Abstract: A photolithographic method which produces a structure in a radiation-emitting semiconductor component by providing a semiconductor wafer having a semiconductor layer sequence, applying a first photoresist layer to the semiconductor wafer, providing a mask, and arranging the mask relative to the coated semiconductor wafer, exposing the first photoresist layer and imaging the mask in the first photoresist layer, arranging the mask or a different mask relative to the semiconductor wafer at another position different from a first position and again exposing the first photoresist layer and imaging the mask in the first photoresist layer or applying a second photoresist layer to the first photoresist layer, arranging the mask or a different mask relative to the semiconductor wafer at a second position, and exposing the second photoresist layer and imaging the mask in the second photoresist layer, forming a patterned photoresist layer and patterning the semiconductor wafer.
    Type: Grant
    Filed: August 15, 2014
    Date of Patent: October 11, 2016
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Bernd Böhm, Sebastian Hoibl
  • Publication number: 20150050765
    Abstract: A photolithographic method which produces a structure in a radiation-emitting semiconductor component by providing a semiconductor wafer having a semiconductor layer sequence, applying a first photoresist layer to the semiconductor wafer, providing a mask, and arranging the mask relative to the coated semiconductor wafer, exposing the first photoresist layer and imaging the mask in the first photoresist layer, arranging the mask or a different mask relative to the semiconductor wafer at another position different from a first position and again exposing the first photoresist layer and imaging the mask in the first photoresist layer or applying a second photoresist layer to the first photoresist layer, arranging the mask or a different mask relative to the semiconductor wafer at a second position, and exposing the second photoresist layer and imaging the mask in the second photoresist layer, forming a patterned photoresist layer and patterning the semiconductor wafer.
    Type: Application
    Filed: August 15, 2014
    Publication date: February 19, 2015
    Inventors: Bernd Böhm, Sebastian Hoibl