Patents by Inventor Sebastian KIBLER

Sebastian KIBLER has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230121697
    Abstract: What is suggested is a micromembrane pumping device for pumping a fluid, having: a pump chamber to which an inlet valve, an outlet valve, and a membrane device for varying a volume of the pump chamber are associated, wherein the membrane device has a plate-shaped actuator for deforming the membrane device; and influencing means for influencing the plate-shaped actuator and the volume of the pump chamber; wherein the membrane device has a plate-shaped membrane body limiting the pump chamber; wherein the plate-shaped actuator is arranged on a side of the plate-shaped membrane body facing away from the pump chamber; wherein the plate-shaped actuator is mounted to and electrically insulated from the plate-shaped membrane body by an electrically insulating glue layer; wherein at least one embedded portion of a support body at or in which a deformation sensor for detecting a deformation of the membrane device is arranged, is arranged within the glue layer to detect the volume of the pump chamber; wherein the influe
    Type: Application
    Filed: December 16, 2022
    Publication date: April 20, 2023
    Inventors: Agnes BUSSMANN, Lorenz GRUENERBEL, Christian WALD, Sebastian KIBLER
  • Patent number: 11624741
    Abstract: According to an embodiment, a sensor arrangement comprises a first micropump, e.g. a microfluidic or peristaltic pump, having a normally closed (NC) safety valve, e.g. at the micropump output, a second micropump, e.g. microfluidic or peristaltic pump, having a normally closed (NC) safety valve, e.g. at the micropump output, and a sensor having a sensor chamber, e.g. a sensor cavity or sensor volume, with a sensor element, e.g. an active sensitive region or layer, in the sensor chamber, wherein the sensor is configured to provide a sensor output signal based on a condition of the fluid, e.g. a gas or liquid, in the sensor chamber. The sensor chamber of the sensor is fluidically coupled between the first and second micropump, and the first and second micropump are configured to provide a defined operation mode of the sensor arrangement based on the respective activation or operation condition of the first and second micropump for providing (1.) a defined negative fluid pressure in the sensor chamber, (2.
    Type: Grant
    Filed: October 23, 2020
    Date of Patent: April 11, 2023
    Assignee: FRAUNHOFER-GESELLSCHAFT ZUR FÖRDERUNG DER ANGEWANDTEN FORSCHUNG E.V.
    Inventors: Martin Richter, Lorenz Grünerbel, Sebastian Kibler, Agnes Bußmann, Yuecel Congar, Henry Leistner
  • Publication number: 20230029038
    Abstract: An implant which includes: a housing having a chamber; and a sensor unit; a first membrane covering the chamber at a first pressure side and a second membrane covering the chamber at a second pressure side; the chamber includes a pressure transfer device being in contact to the first and second membrane and to the sensor unit arranged within the chamber between the first and second membrane, wherein a sensor control unit arranged within the housing; wherein the sensor unit is configured to determine a pressure difference between a pressure at the first pressure side of the chamber and a pressure at the second pressure side chamber of the chamber.
    Type: Application
    Filed: October 5, 2022
    Publication date: January 26, 2023
    Inventors: Martin RICHTER, Lorenz GRÜNERBEL, Sebastian KIBLER
  • Patent number: 11555725
    Abstract: A microstructured fluid flow control device includes a substrate with a piezo-actuated first membrane arranged on a first substrate side, and a fluid channel that extends through the substrate between the first substrate side and an opposite second substrate side. In addition, the microstructured fluid flow control device includes a microvalve that extends through the fluid channel and is configured to close the fluid channel in an unactuated state, and a second membrane arranged on the first substrate side and spaced apart from the membrane and arranged between the fluid channel and the first piezo-actuated membrane. The second membrane is joined to the microvalve and is mechanically biased towards the first membrane so that a biasing force is applied to the microvalve, wherein the biasing force is part of a restoring force that causes the microvalve to close the fluid channel in an unactuated state.
    Type: Grant
    Filed: July 29, 2020
    Date of Patent: January 17, 2023
    Assignee: Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
    Inventors: Christian Wald, Sebastian Kibler, Martin Wackerle, Yuecel Congar
  • Publication number: 20210382024
    Abstract: According to an embodiment, a sensor arrangement comprises a first micropump, e.g. a microfluidic or peristaltic pump, having a normally closed (NC) safety valve, e.g. at the micropump output, a second micropump, e.g. microfluidic or peristaltic pump, having a normally closed (NC) safety valve, e.g. at the micropump output, and a sensor having a sensor chamber, e.g. a sensor cavity or sensor volume, with a sensor element, e.g. an active sensitive region or layer, in the sensor chamber, wherein the sensor is configured to provide a sensor output signal based on a condition of the fluid, e.g. a gas or liquid, in the sensor chamber. The sensor chamber of the sensor is fluidically coupled between the first and second micropump, and the first and second micropump are configured to provide a defined operation mode of the sensor arrangement based on the respective activation or operation condition of the first and second micropump for providing (1.) a defined negative fluid pressure in the sensor chamber, (2.
    Type: Application
    Filed: October 23, 2020
    Publication date: December 9, 2021
    Inventors: Martin RICHTER, Lorenz GRÜNERBEL, Sebastian KIBLER, Agnes BUßMANN, Yuecel CONGAR, Henry LEISTNER
  • Patent number: 11022470
    Abstract: The invention relates to a free-jet dosing system for dosing a free fluid jet to be dispensed. The free-jet dosing system includes, inter alia, a pump including an inlet and an outlet and configured to deliver fluid to be dispensed to the outlet. The free-jet dosing system further includes a dosage monitoring device arranged on the outlet side of the pump, the dosage monitoring device having an opening through which at least some of the fluid to be dispensed may pass, and the dosage monitoring device having a flow rate meter configured to determine the flow rate of the fluid which passes through the opening of the dosage monitoring device. In the inventive free-jet dosing system, the opening of the dosage monitoring device is configured as an outlet nozzle for ejecting the free fluid jet.
    Type: Grant
    Filed: December 8, 2016
    Date of Patent: June 1, 2021
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Martin Richter, Martin Wackerle, Sebastian Kibler
  • Publication number: 20210041280
    Abstract: A microstructured fluid flow control device includes a substrate with a piezo-actuated first membrane arranged on a first substrate side, and a fluid channel that extends through the substrate between the first substrate side and an opposite second substrate side. In addition, the microstructured fluid flow control device includes a microvalve that extends through the fluid channel and is configured to close the fluid channel in an unactuated state, and a second membrane arranged on the first substrate side and spaced apart from the membrane and arranged between the fluid channel and the first piezo-actuated membrane. The second membrane is joined to the microvalve and is mechanically biased towards the first membrane so that a biasing force is applied to the microvalve, wherein the biasing force is part of a restoring force that causes the microvalve to close the fluid channel in an unactuated state.
    Type: Application
    Filed: July 29, 2020
    Publication date: February 11, 2021
    Inventors: Christian WALD, Sebastian KIBLER, Martin WACKERLE, Yuecel CONGAR
  • Patent number: 10729102
    Abstract: A controllable scent sample dispenser has a microdosing device for outputting, during an activation state, a scent sample at a scent sample outlet to the environment, wherein the microdosing device is placeable adjacent to an animal's nose so that a distance between the outlet of the microdosing device and a nare or nostril of the animal's nose is within a predefined range, and a microdosing driver unit for adjusting a dosing rate of the scent sample output at the scent sample outlet by selectively activating the microdosing device.
    Type: Grant
    Filed: June 22, 2017
    Date of Patent: August 4, 2020
    Assignee: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V.
    Inventors: Rene Linssen, Martin Richter, Sebastian Kibler
  • Patent number: 10639432
    Abstract: A fluid sample dispenser includes a microdosing device for outputting, during an activation state, a fluid sample at a fluid sample outlet to the environment, wherein the microdosing device is placeable adjacent to a person's nose so that a distance between the outlet of the microdosing device and a nostril of the person's nose is within a predefined range, and a microdosing driver unit for adjusting a dosing rate of the scent sample output at the scent sample outlet by selectively activating the microdosing device.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: May 5, 2020
    Assignee: Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
    Inventors: Martin Richter, Sebastian Kibler, Juergen Kruckow
  • Patent number: 10550833
    Abstract: The invention relates to a method as well as a microdosing system for dosing an amount of fluid to be dispensed, wherein the microdosing system includes a micropump including an inlet and an outlet and configured to suck the fluid to be dispensed through the inlet and to dispense at least part of the fluid from the outlet. Further, the inventive microdosing system includes a first flow sensor arranged on the inlet side or the outlet side having an opening and a flow rate meter, wherein the flow rate meter is configured to determine the flow rate of the fluid passing through this opening. Additionally, the inventive microdosing system includes calibrators and/or fault detectors of the first flow sensor.
    Type: Grant
    Filed: December 7, 2016
    Date of Patent: February 4, 2020
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Martin Richter, Martin Wackerle, Sebastian Kibler
  • Publication number: 20170290294
    Abstract: A controllable scent sample dispenser has a microdosing device for outputting, during an activation state, a scent sample at a scent sample outlet to the environment, wherein the microdosing device is placeable adjacent to an animal's nose so that a distance between the outlet of the microdosing device and a nare or nostril of the animal's nose is within a predefined range, and a microdosing driver unit for adjusting a dosing rate of the scent sample output at the scent sample outlet by selectively activating the microdosing device.
    Type: Application
    Filed: June 22, 2017
    Publication date: October 12, 2017
    Inventors: Rene LINSSEN, Martin RICHTER, Sebastian KIBLER
  • Publication number: 20170160113
    Abstract: The invention relates to a free-jet dosing system for dosing a free fluid jet to be dispensed. The free-jet dosing system includes, inter alia, a pump including an inlet and an outlet and configured to deliver fluid to be dispensed to the outlet. The free-jet dosing system further includes a dosage monitoring device arranged on the outlet side of the pump, the dosage monitoring device having an opening through which at least some of the fluid to be dispensed may pass, and the dosage monitoring device having a flow rate meter configured to determine the flow rate of the fluid which passes through the opening of the dosage monitoring device. In the inventive free-jet dosing system, the opening of the dosage monitoring device is configured as an outlet nozzle for ejecting the free fluid jet.
    Type: Application
    Filed: December 8, 2016
    Publication date: June 8, 2017
    Inventors: Martin RICHTER, Martin WACKERLE, Sebastian KIBLER
  • Publication number: 20170159650
    Abstract: The invention relates to a method as well as a microdosing system for dosing an amount of fluid to be dispensed, wherein the microdosing system includes a micropump including an inlet and an outlet and configured to suck the fluid to be dispensed through the inlet and to dispense at least part of the fluid from the outlet. Further, the inventive microdosing system includes a first flow sensor arranged on the inlet side or the outlet side having an opening and a flow rate meter, wherein the flow rate meter is configured to determine the flow rate of the fluid passing through this opening. Additionally, the inventive microdosing system includes calibrators and/or fault detectors of the first flow sensor.
    Type: Application
    Filed: December 7, 2016
    Publication date: June 8, 2017
    Inventors: Martin RICHTER, Martin WACKERLE, Sebastian KIBLER
  • Patent number: 9581607
    Abstract: A test station for testing at least one of fluidic component arranged on a substrate, each fluidic component having a fluidic port, comprises a carrier device for holding the substrate with the at least one fluidic component, a connecting device for fluidically connecting the fluidic port of the at least one fluidic component located in a testing position to a first adapter element of the connecting device, and a displacement device configured to displace the substrate and the connecting device relative to each other, and to bring the substrate into the testing position.
    Type: Grant
    Filed: November 12, 2013
    Date of Patent: February 28, 2017
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Juergen Kruckow, Sebastian Kibler, Martin Richter
  • Patent number: 9410832
    Abstract: A microfluidic device for detecting a flow parameter, includes a channel configured within a base body, the channel including a first inlet for feeding a first fluid and a second inlet for feeding a second fluid so as to form a fluid stream having the first and second fluids within the channel, and further including an output for providing the fluid stream on the output side, a first feeder including a micropump associated with the first inlet for selectively feeding the first fluid to the channel, a second feeder associated with the second inlet for feeding the second fluid to the channel; and a detector for detecting, on the basis of a different physical property of the first fluid and the second fluid within the channel, a measurement value dependent on a current flow parameter of the first or second fluid.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: August 9, 2016
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Martin Richter, Sebastian Kibler
  • Publication number: 20140069214
    Abstract: A test station for testing at least one of fluidic component arranged on a substrate, each fluidic component having a fluidic port, comprises a carrier device for holding the substrate with the at least one fluidic component, a connecting device for fluidically connecting the fluidic port of the at least one fluidic component located in a testing position to a first adapter element of the connecting device, and a displacement device configured to displace the substrate and the connecting device relative to each other, and to bring the substrate into the testing position.
    Type: Application
    Filed: November 12, 2013
    Publication date: March 13, 2014
    Inventors: Juergen KRUCKOW, Sebastian KIBLER, Martin RICHTER
  • Publication number: 20140069420
    Abstract: A fluid sample dispenser includes a microdosing device for outputting, during an activation state, a fluid sample at a fluid sample outlet to the environment, wherein the microdosing device is placeable adjacent to a person's nose so that a distance between the outlet of the microdosing device and a nostril of the person's nose is within a predefined range, and a microdosing driver unit for adjusting a dosing rate of the scent sample output at the scent sample outlet by selectively activating the microdosing device.
    Type: Application
    Filed: November 8, 2013
    Publication date: March 13, 2014
    Inventors: Martin RICHTER, Sebastian KIBLER, Juergen KRUCKOW
  • Publication number: 20140060452
    Abstract: A controllable scent sample dispenser has a microdosing device for outputting, during an activation state, a scent sample at a scent sample outlet to the environment, wherein the microdosing device is placeable adjacent to an animal's nose so that a distance between the outlet of the microdosing device and a nare or nostril of the animal's nose is within a predefined range, and a microdosing driver unit for adjusting a dosing rate of the scent sample output at the scent sample outlet by selectively activating the microdosing device.
    Type: Application
    Filed: November 7, 2013
    Publication date: March 6, 2014
    Applicant: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Rene LINSSEN, Martin RICHTER, Sebastian KIBLER