Patents by Inventor Sebastian Kreiter

Sebastian Kreiter has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230330198
    Abstract: The present invention relates to non-immunogenic RNA. This RNA forms the basis for the development of therapeutic agents for inducing tolerance towards an autoantigen and thus, for the treatment of autoimmune diseases.
    Type: Application
    Filed: June 12, 2023
    Publication date: October 19, 2023
    Inventors: Ugur Sahin, Sebastian Kreiter, Christina Krienke, Jutta Petschenka, Lena Mareen Kranz, Mustafa Diken
  • Publication number: 20230226217
    Abstract: The present invention is in the field of immunotherapy, in particular tumor immunotherapy. The present invention provides pharmaceutical formulations for delivering RNA to antigen presenting cells such as dendrite cells (DCs) in the spleen after systemic administration. In particular, the formulations described herein enable to induce an immune response after systemic administration of antigen-coding RNA.
    Type: Application
    Filed: November 30, 2022
    Publication date: July 20, 2023
    Inventors: Ugur Sahin, Heinrich Haas, Sebastian Kreiter, Mustafa Diken, Daniel Fritz, Martin Meng, Lena Mareen Kranz, Kerstin Reuter
  • Patent number: 11701413
    Abstract: The present invention relates to non-immunogenic RNA. This RNA forms the basis for the development of therapeutic agents for inducing tolerance towards an autoantigen and thus, for the treatment of autoimmune diseases.
    Type: Grant
    Filed: April 10, 2018
    Date of Patent: July 18, 2023
    Assignees: BioNTech SE, TRON—Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz gemeinnützige GmbH
    Inventors: Ugur Sahin, Sebastian Kreiter, Christina Krienke, Jutta Petschenka, Lena Mareen Kranz, Mustafa Diken
  • Publication number: 20230193296
    Abstract: It was the object of the present invention to provide RNA with increased stability and translation efficiency and means for obtaining such RNA. It should be possible to obtain increased grades of expression by using said RNA in gene therapy approaches.
    Type: Application
    Filed: October 25, 2022
    Publication date: June 22, 2023
    Inventors: Ugur Sahin, Silke Holtkamp, Ozlem Tureci, Sebastian Kreiter
  • Patent number: 11660338
    Abstract: The present invention relates to RNA decorated particles such as RNA decorated lipid particles, preferably to RNA decorated liposomes. Further, the present invention relates to a pharmaceutical composition comprising RNA decorated particles such as RNA decorated lipid particles, preferably RNA decorated liposomes. Said pharmaceutical composition is useful for inducing an immune response. It is also useful in a prophylactic and/or therapeutic treatment of a disease involving an antigen. Furthermore, the present invention relates to a method for producing the RNA decorated particles such as RNA decorated lipid particles, preferably RNA decorated liposomes.
    Type: Grant
    Filed: January 22, 2020
    Date of Patent: May 30, 2023
    Assignees: BIONTECH SE, TRON
    Inventors: Ugur Sahin, Heinrich Haas, Sebastian Kreiter, Yves Hüsemann, Mustafa Diken, Kerstin Reuter, Hossam Hefesha
  • Publication number: 20230145774
    Abstract: The present disclosure relates to methods and agents for antigen vaccination and inducing effective antigen-specific immune effector cell responses such as T cell responses. Specifically, the present disclosure relates to methods comprising administering to a subject (i) non-immunogenic RNA encoding a peptide or protein comprising an epitope for inducing an immune response against an antigen in the subject, i.e., non-immunogenic RNA encoding vaccine antigen; and (ii) an immunostimulant or RNA encoding an immunostimulant. Administering to the subject non-immunogenic RNA encoding vaccine antigen may provide (following expression of the RNA by appropriate target cells) vaccine antigen for stimulation, priming and/or expansion of immune effector cells and, thus, may induce an immune response against vaccine antigen (and disease-associated antigen) in the subject.
    Type: Application
    Filed: March 30, 2021
    Publication date: May 11, 2023
    Inventors: Ugur SAHIN, Lena Mareen KRANZ, Mustafa DIKEN, Lina HILSCHER, Sebastian KREITER
  • Patent number: 11559587
    Abstract: The present invention is in the field of immunotherapy, in particular tumor immunotherapy. The present invention provides pharmaceutical formulations for delivering RNA to antigen presenting cells such as dendrite cells (DCs) in the spleen after systemic administration. In particular, the formulations described herein enable to induce an immune response after systemic administration of antigen-coding RNA.
    Type: Grant
    Filed: September 23, 2019
    Date of Patent: January 24, 2023
    Assignees: TRON-Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz gGmbH, BioNTech SE
    Inventors: Ugur Sahin, Heinrich Haas, Sebastian Kreiter, Mustafa Diken, Daniel Fritz, Martin Meng, Lena Mareen Kranz, Kerstin Reuter
  • Publication number: 20220378876
    Abstract: Tumor cells often evade an immune response, e.g., by reducing or eliminating MHC expression and/or IFN-signaling, which enables uncontrolled growth. We demonstrate herein that antibody-based immunotherapy in combination with IL2 administration is an effective therapy against such resistant tumors. Specifically, the present disclosure relates to methods of treating a subject with cancer that is at least partially resistant to an MHC-dependent T cell response comprising administering to the subject: a. a polypeptide comprising IL2 or a functional variant thereof or a polynucleotide encoding a polypeptide comprising IL2 or a functional variant thereof; and b. antibody-based immunotherapy.
    Type: Application
    Filed: September 22, 2020
    Publication date: December 1, 2022
    Inventors: Ugur Sahin, Mathias Vormehr, Jan David Beck, Mustafa Diken, Sebastian Kreiter
  • Publication number: 20220313811
    Abstract: The present invention relates to compositions comprising polyplex formulations for delivery of RNA to a target organ or a target cell after parenteral administration, in particular after intramuscular administration. More precisely, the present invention relates to formulations for administration of RNA such as self-replicating RNA, in particular by intramuscular injection. In more detail, the formulations comprise polyplex particles from single stranded RNA and a polyalkyleneimine. The RNA may encode a protein of interest, such as a pharmaceutically active protein. Furthermore, the present invention relates to pharmaceutical products, comprising said RNA polyplex formulations for parenteral application to humans or to animals. The present invention relates as well to manufacturing of such pharmaceutical products, comprising, optionally, steps of sterile filtration, freezing and dehydration.
    Type: Application
    Filed: April 11, 2022
    Publication date: October 6, 2022
    Inventors: Ugur Sahin, Heinrich Haas, Annette Vogel, Daniel Zucker, Stephanie Erbar, Kerstin Walzer, Anne Schlegel, Sebastian Hörner, Sebastian Kreiter, Mustafa Diken, Jorge Moreno Herrero
  • Publication number: 20220282322
    Abstract: The present invention relates to the provision of vaccines which are specific for a patient's tumor and are potentially useful for immunotherapy of the primary tumor as well as tumor metastases. In one aspect, the present invention relates to a method for providing an individualized cancer vaccine comprising the steps: (a) identifying cancer specific somatic mutations in a tumor specimen of a cancer patient to provide a cancer mutation signature of the patient; and (b) providing a vaccine featuring the cancer mutation signature obtained in step (a). In a further aspect, the present invention relates to vaccines which are obtainable by said method.
    Type: Application
    Filed: January 14, 2022
    Publication date: September 8, 2022
    Inventors: Ugur Sahin, Sebastian Kreiter, Mustafa Diken, Jan Diekmann, Michael Koslowski, Cedrik Britten, John Christopher Castle, Martin Löwer, Bernhard Renard, Tana Omokoko, Johannes Hendrikus De Graaf
  • Publication number: 20220257783
    Abstract: The present invention relates to fusion molecules of antigens, the nucleic acids coding therefor and the use of such fusion molecules and nucleic acids. In particular, said invention relates to fusion molecules, comprising an antigen and the trans-membrane region and cytoplasmic region of a MHC molecule and/or the cytoplasmic region of a MHC or a SNARE molecule.
    Type: Application
    Filed: March 7, 2022
    Publication date: August 18, 2022
    Inventors: Ozlem Tureci, Ugur Sahin, Sebastian Kreiter
  • Publication number: 20220249372
    Abstract: The present invention relates to lipid particles comprising at least one cationic lipid, at least one water-soluble therapeutically effective compound and RNA. Further, the present invention relates to a pharmaceutical composition comprising such particles. Said pharmaceutical composition is useful for inducing an immune response. It is also useful in a prophylactic and/or therapeutic treatment of a disease involving an antigen. Furthermore, the present invention relates to a method for producing the particles.
    Type: Application
    Filed: April 25, 2022
    Publication date: August 11, 2022
    Inventors: Hossam Hefesha, Ugur Sahin, Heinrich Haas, Sebastian Kreiter, Yves Hüsemann, Mustafa Diken, Kerstin Walzer
  • Patent number: 11337922
    Abstract: The present invention relates to lipid particles comprising at least one cationic lipid, at least one water-soluble therapeutically effective compound and RNA. Further, the present invention relates to a pharmaceutical composition comprising such particles. Said pharmaceutical composition is useful for inducing an immune response. It is also useful in a prophylactic and/or therapeutic treatment of a disease involving an antigen. Furthermore, the present invention relates to a method for producing the particles.
    Type: Grant
    Filed: May 25, 2021
    Date of Patent: May 24, 2022
    Assignees: BioN Tech SE, Tron—Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg Universität Mainz GmbH
    Inventors: Hossam Hefesha, Ugur Sahin, Heinrich Haas, Sebastian Kreiter, Yves Hüsemann, Mustafa Diken, Kerstin Walzer
  • Publication number: 20220143144
    Abstract: The present disclosure relates to methods and agents for enhancing the effect of immune effector cells, in particular immune effector cells that respond to interleukin-2 (IL2), for example effector T cells such as CD8+ T cells. Specifically, the present disclosure relates to methods comprising administering to a subject a polypeptide comprising IL2 or a functional variant thereof or a polynucleotide encoding a polypeptide comprising IL2 or a functional variant thereof and a polypeptide comprising type I interferon (IFN) or a functional variant thereof or a polynucleotide encoding a polypeptide comprising type I interferon or a functional variant thereof.
    Type: Application
    Filed: April 2, 2020
    Publication date: May 12, 2022
    Inventors: Ugur SAHIN, Mathias VORMEHR, Lena KRANZ, Sina FELLERMEIER-KOPF, Alexander MUIK, Daniel REIDENBACH, Mustafa DIKEN, Sebastian KREITER
  • Patent number: 11318195
    Abstract: The present invention relates to compositions comprising polyplex formulations for delivery of RNA to a target organ or a target cell after parenteral administration, in particular after intramuscular administration. More precisely, the present invention relates to formulations for administration of RNA such as self-replicating RNA, in particular by intramuscular injection. In more detail, the formulations comprise polyplex particles from single stranded RNA and a polyalkyleneimine. The RNA may encode a protein of interest, such as a pharmaceutically active protein. Furthermore, the present invention relates to pharmaceutical products, comprising said RNA polyplex formulations for parenteral application to humans or to animals. The present invention relates as well to manufacturing of such pharmaceutical products, comprising, optionally, steps of sterile filtration, freezing and dehydration.
    Type: Grant
    Filed: July 14, 2017
    Date of Patent: May 3, 2022
    Assignees: BIONTECH SE, TRON-TRANSLATIONALE ONKOLOGIE AN DER UNIVERSITATSMEDIZIN DER JOHANNES GUTENBERG-UNIVERSITAT MAINZ GEMEINNUTZIGE GMBH
    Inventors: Ugur Sahin, Heinrich Haas, Annette Vogel, Daniel Zucker, Stephanie Erbar, Kerstin Walzer, Anne Schlegel, Sebastian Hörner, Sebastian Kreiter, Mustafa Diken, Jorge Moreno Herrero
  • Patent number: 11298426
    Abstract: The present invention relates to fusion molecules of antigens, the nucleic acids coding therefor and the use of such fusion molecules and nucleic acids. In particular, said invention relates to fusion molecules, comprising an antigen and the trans-membrane region and cytoplasmic region of a MHC molecule and/or the cytoplasmic region of a MHC or a SNARE molecule.
    Type: Grant
    Filed: February 13, 2018
    Date of Patent: April 12, 2022
    Assignee: BioNTech SE
    Inventors: Ozlem Tureci, Ugur Sahin, Sebastian Kreiter
  • Publication number: 20220074948
    Abstract: The present invention relates to methods for predicting T cell epitopes useful for vaccination. In particular, the present invention relates to methods for predicting whether modifications in peptides or polypeptides such as tumor-associated neoantigens are immunogenic and, in particular, useful for vaccination, or for predicting which of such modifications are most immunogenic and, in particular, most useful for vaccination. The methods of the invention may be used, in particular, for the provision of vaccines which are specific for a patient's tumor and thus, in the context of personalized cancer vaccines.
    Type: Application
    Filed: September 21, 2021
    Publication date: March 10, 2022
    Inventors: Ugur Sahin, Martin Löwer, Arbel D. Tadmor, Sebastian Boegel, Barbara Schrörs, Mathias Vormehr, Sebastian Kreiter
  • Patent number: 11248264
    Abstract: The present invention relates to the provision of vaccines which are specific for a patient's tumor and are potentially useful for immunotherapy of the primary tumor as well as tumor metastases. In one aspect, the present invention relates to a method for providing an individualized cancer vaccine comprising the steps: (a) identifying cancer specific somatic mutations in a tumor specimen of a cancer patient to provide a cancer mutation signature of the patient; and (b) providing a vaccine featuring the cancer mutation signature obtained in step (a). In a further aspect, the present invention relates to vaccines which are obtainable by said method.
    Type: Grant
    Filed: July 2, 2020
    Date of Patent: February 15, 2022
    Assignees: TRON-Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz gGmbH, BioNTech SE
    Inventors: Ugur Sahin, Sebastian Kreiter, Mustafa Diken, Jan Diekmann, Michael Koslowski, Cedrik Britten, John Christopher Castle, Martin Löwer, Bernhard Renard, Tana Omokoko, Johannes Hendrikus De Graaf
  • Publication number: 20210338580
    Abstract: The present invention relates to lipid particles comprising at least one cationic lipid, at least one water-soluble therapeutically effective compound and RNA. Further, the present invention relates to a pharmaceutical composition comprising such particles. Said pharmaceutical composition is useful for inducing an immune response. It is also useful in a prophylactic and/or therapeutic treatment of a disease involving an antigen. Furthermore, the present invention relates to a method for producing the particles.
    Type: Application
    Filed: May 25, 2021
    Publication date: November 4, 2021
    Inventors: Hossam Hefesha, Ugur Sahin, Heinrich Haas, Sebastian Kreiter, Yves Hüsemann, Mustafa Diken, Kerstin Walzer
  • Patent number: 11156617
    Abstract: The present invention relates to methods for predicting T cell epitopes useful for vaccination. In particular, the present invention relates to methods for predicting whether modifications in peptides or polypeptides such as tumor-associated neoantigens are immunogenic and, in particular, useful for vaccination, or for predicting which of such modifications are most immunogenic and, in particular, most useful for vaccination. The methods of the invention may be used, in particular, for the provision of vaccines which are specific for a patient's tumor and thus, in the context of personalized cancer vaccines.
    Type: Grant
    Filed: February 9, 2016
    Date of Patent: October 26, 2021
    Assignees: BioNTech RNA Pharmaceuticals GbmH, TRON-Translationale Onkologie an der Universitätsmedzin der Johannes Gutenberg-Universität Mainz gGmbH
    Inventors: Ugur Sahin, Martin Löwer, Arbel D. Tadmor, Sebastian Boegel, Barbara Schrörs, Mathias Vormehr, Sebastian Kreiter