Patents by Inventor Sebastian Marius Sarrach

Sebastian Marius Sarrach has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240019749
    Abstract: A non-light-emitting variable transmission device can include an active stack; a transparent conductive layer overlying the active stack; an antireflective layer overlying the transparent conductive layer and defining a hole; and a bus bar comprising a conductive tape that extends into the hole and contacts the transparent conductive layer. Proper selection of materials and design of a bus bar can allow an electrical connection to be made to the transparent conductive layer without the need to cut an underlying transparent conductive layer. A method of forming the non-light-emitting variable transmission device can include patterning the antireflective layer to define the hole that extends to the transparent conductive layer. Improved control in patterning allows the antireflective layer to be relatively thin and not remove too much of the underlying transparent conductive layer.
    Type: Application
    Filed: July 18, 2023
    Publication date: January 18, 2024
    Inventors: Sebastian Marius SARRACH, Jean-Christophe GIRON, Pascal REUTLER, Sean MURPHY, Peter E. BOCEK
  • Publication number: 20230333433
    Abstract: An insulating glazing unit includes two panes and a spacer, with two pane contact surfaces. A first and second pane contact surfaces are connected to, respectively, a first and a second pane via a sealant to form a glazing interior space and a glazing exterior space. At least one pane is provided on the side facing the glazing interior space at least partially with an electrically conductive coating and/or an electrically controllable functional element and two bus bars are provided for electrically contacting the electrically conductive coating and/or the electrically controllable functional element. A bus bar includes an electrically conductive adhesive tape. The electrically conductive adhesive tape includes an electrically conductive adhesion layer, a conductor track, and an opaque, electrically insulating cover.
    Type: Application
    Filed: September 1, 2021
    Publication date: October 19, 2023
    Inventors: Sebastian Marius SARRACH, Ariane WEISSLER, Michael HIRSCH
  • Patent number: 11714327
    Abstract: A non-light-emitting variable transmission device can include an active stack; a transparent conductive layer overlying the active stack; an antireflective layer overlying the transparent conductive layer and defining a hole; and a bus bar comprising a conductive tape that extends into the hole and contacts the transparent conductive layer. Proper selection of materials and design of a bus bar can allow an electrical connection to be made to the transparent conductive layer without the need to cut an underlying transparent conductive layer. A method of forming the non-light-emitting variable transmission device can include patterning the antireflective layer to define the hole that extends to the transparent conductive layer. Improved control in patterning allows the antireflective layer to be relatively thin and not remove too much of the underlying transparent conductive layer.
    Type: Grant
    Filed: September 7, 2018
    Date of Patent: August 1, 2023
    Assignee: SAGE ELECTROCHROMICS, INC.
    Inventors: Sebastian Marius Sarrach, Jean-Christophe Giron, Pascal Reutler, Sean Murphy, Peter Bocek
  • Publication number: 20230013577
    Abstract: An electrochemical device and method of forming said device is disclosed. The method can include providing a substrate and stack overlying the substrate. The stack can include a first transparent conductive layer over the substrate, a cathodic electrochemical layer over the first transparent conductive layer, an anodic electrochemical layer over the electrochromic layer, and a second transparent conductive layer overlying the anodic electrochemical layer. The method can include depositing an insulating layer over the stack and determining a first pattern for the second transparent conductive layer. The first pattern can include a first region and a second region. The first region and the second region can be the same material. The method can include patterning the first region of the second transparent conductive layer without removing the material from the first region. The first region can have a first resistivity and the second region can have a second resistivity.
    Type: Application
    Filed: September 22, 2022
    Publication date: January 19, 2023
    Inventors: Yigang Wang, Jean-Christophe Giron, Bryan D. Greer, Sebastian Marius Sarrach, Thomas Doublein
  • Patent number: 11460748
    Abstract: An electrochemical device and method of forming said device is disclosed. The method can include providing a substrate and stack overlying the substrate. The stack can include a first transparent conductive layer over the substrate, a cathodic electrochemical layer over the first transparent conductive layer, an anodic electrochemical layer over the electrochromic layer, and a second transparent conductive layer overlying the anodic electrochemical layer. The method can include depositing an insulating layer over the stack and determining a first pattern for the second transparent conductive layer. The first pattern can include a first region and a second region. The first region and the second region can be the same material. The method can include patterning the first region of the second transparent conductive layer without removing the material from the first region. The first region can have a first resistivity and the second region can have a second resistivity.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: October 4, 2022
    Assignee: SAGE ELECTROCHROMICS, INC.
    Inventors: Yigang Wang, Jean-Christophe Giron, Bryan D. Greer, Sebastian Marius Sarrach, Thomas Doublein
  • Publication number: 20220187670
    Abstract: An electrochromic apparatus is disclosed. The electrochromic device can include a first bus bar electrically connected to a first transparent conductor, where the first bus bar comprises a first segment between a second segment and a third segment, where the first segment has a first thickness that is less than a second thickness of the second segment and less than a third thickness of the third segment. The electrochromic apparatus can further include a first voltage supply terminal that is offset from a center of the first bus bar.
    Type: Application
    Filed: December 10, 2021
    Publication date: June 16, 2022
    Inventors: Yigang Wang, Bolei Di, Jean-Christophe Giron, Sebastian Marius Sarrach, Ariane Weissler, Bryan D. Greer
  • Publication number: 20200301228
    Abstract: An electrochemical device and method of forming said electrochemical device is disclosed. The method can include providing a substrate and a stack overlying the substrate. The stack can include a first transparent conductive layer over the substrate, a cathodic electrochemical layer over the first transparent conductive layer, an anodic electrochemical layer over the electrochromic layer, and a second transparent conductive layer overlying the anodic electrochemical layer. The method can further include determining a first pattern for the first transparent conductive layer. The first pattern can include a first region and a second region. The first region and the second region can include the same material. The method can also include patterning the first region of the first transparent conductive layer without removing the material from the first region. After patterning, the first region can have a first resistivity and the second region can have a second resistivity.
    Type: Application
    Filed: March 17, 2020
    Publication date: September 24, 2020
    Inventor: Sebastian Marius SARRACH
  • Publication number: 20200209701
    Abstract: An electrochemical device and method of forming said device is disclosed. The method can include providing a substrate and stack overlying the substrate. The stack can include a first transparent conductive layer over the substrate, a cathodic electrochemical layer over the first transparent conductive layer, an anodic electrochemical layer over the electrochromic layer, and a second transparent conductive layer overlying the anodic electrochemical layer. The method can include depositing an insulating layer over the stack and determining a first pattern for the second transparent conductive layer. The first pattern can include a first region and a second region. The first region and the second region can be the same material. The method can include patterning the first region of the second transparent conductive layer without removing the material from the first region. The first region can have a first resistivity and the second region can have a second resistivity.
    Type: Application
    Filed: December 16, 2019
    Publication date: July 2, 2020
    Inventors: Yigang WANG, Jean-Christophe Giron, Bryan D. Greer, Sebastian Marius Sarrach, Thomas Doublein
  • Publication number: 20200096830
    Abstract: An electroactive device comprising a stack comprising a first electrode and a second electrode; and an electroactive layer disposed between the first and second electrodes, wherein the stack comprises a mitigated area essentially free of material corresponding with the first electrode, and wherein at least a portion of the second electrode and electroactive layer, as contained in the mitigated area, are functional.
    Type: Application
    Filed: September 24, 2019
    Publication date: March 26, 2020
    Inventors: Sebastian Marius SARRACH, Nathaniel James Lawson
  • Patent number: 10509291
    Abstract: A stack of layers can be formed adjacent to a substrate before any layer within the stack is patterned. In an embodiment, combinations of substrates and stacks can be made and stored for an extended period, such as more than a week or a month, or shipped to a remote location before further manufacturing occurs. By delaying irreversible patterning until the closer to the date final product will be shipped to a customer, the likelihood of having too much inventory of a particular size or having to scrap windows for a custom order that was cancelled after manufacturing started can be substantially reduced. Further, particles between layers of the stack can be avoided. The process flows described are flexible, and many of the patterning operations in forming holes, openings, or the high resistance region can be performed in many different orders.
    Type: Grant
    Filed: February 26, 2018
    Date of Patent: December 17, 2019
    Assignee: SAGE ELECTROCHROMICS, INC.
    Inventors: Sebastian Marius Sarrach, Florent Martin, Erik Jon Bjornard
  • Publication number: 20190079365
    Abstract: A non-light-emitting variable transmission device can include an active stack; a transparent conductive layer overlying the active stack; an antireflective layer overlying the transparent conductive layer and defining a hole; and a bus bar comprising a conductive tape that extends into the hole and contacts the transparent conductive layer. Proper selection of materials and design of a bus bar can allow an electrical connection to be made to the transparent conductive layer without the need to cut an underlying transparent conductive layer. A method of forming the non-light-emitting variable transmission device can include patterning the antireflective layer to define the hole that extends to the transparent conductive layer. Improved control in patterning allows the antireflective layer to be relatively thin and not remove too much of the underlying transparent conductive layer.
    Type: Application
    Filed: September 7, 2018
    Publication date: March 14, 2019
    Inventors: Sebastian Marius SARRACH, Jean-Christophe GIRON, Pascal REUTLER, Sean MURPHY, Peter BOCEK
  • Publication number: 20180252976
    Abstract: A stack of layers can be formed adjacent to a substrate before any layer within the stack is patterned. In an embodiment, combinations of substrates and stacks can be made and stored for an extended period, such as more than a week or a month, or shipped to a remote location before further manufacturing occurs. By delaying irreversible patterning until the closer to the date final product will be shipped to a customer, the likelihood of having too much inventory of a particular size or having to scrap windows for a custom order that was cancelled after manufacturing started can be substantially reduced. Further, particles between layers of the stack can be avoided. The process flows described are flexible, and many of the patterning operations in forming holes, openings, or the high resistance region can be performed in many different orders.
    Type: Application
    Filed: February 26, 2018
    Publication date: September 6, 2018
    Inventors: Sebastian Marius Sarrach, Florent Martin, Erik Jon Bjornard