Patents by Inventor Sebastian U. Engelmann

Sebastian U. Engelmann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11018225
    Abstract: A method for forming an overlap transistor includes forming a gate structure over a III-V material, wet cleaning the III-V material on side regions adjacent to the gate structure and plasma cleaning the III-V material on the side regions adjacent to the gate structure. The III-V material is plasma doped on the side regions adjacent to the gate structure to form plasma doped extension regions that partially extend below the gate structure.
    Type: Grant
    Filed: June 28, 2016
    Date of Patent: May 25, 2021
    Assignee: International Business Machines Corporation
    Inventors: Robert L. Bruce, Kevin K. Chan, Sebastian U. Engelmann, Renee T. Mo, Christopher Scerbo, Hongwen Yan, Jeng-Bang Yau
  • Patent number: 10714341
    Abstract: Lift-off methods for fabricating metal line patterns on a substrate are provided. For example, a method to fabricate a device includes forming a sacrificial layer on a substrate and forming a photoresist mask over the sacrificial layer, isotropically etching a portion of the sacrificial layer exposed through an opening of the photoresist mask to form an undercut region in the sacrificial layer below the photoresist mask, wherein the undercut region defines an overhang structure, and anisotropically etching a portion of the sacrificial layer exposed through the opening of the photoresist mask to form an opening through the sacrificial layer down to the substrate. Metallic material is deposited to cover the photoresist mask and to at least partially fill the opening formed in the sacrificial layer without coating the overhang structure with metallic material. The sacrificial layer is dissolved to lift-off the metallic material covering the photoresist mask.
    Type: Grant
    Filed: May 10, 2017
    Date of Patent: July 14, 2020
    Assignee: ELPIS TECHNOLOGIES INC.
    Inventors: Guy M. Cohen, Sebastian U. Engelmann, Steve Holmes, Jyotica V. Patel
  • Patent number: 10651286
    Abstract: A silicon nitride cap on a gate stack is removed by etching with a fluorohydrocarbon-containing plasma subsequent to formation of source/drain regions without causing unacceptable damage to the gate stack or source/drain regions. A fluorohydrocarbon-containing polymer protection layer is selectively deposited on the regions that are not to be etched during the removal of the nitride cap. The ability to remove the silicon nitride material using gas chemistry, causing formation of a volatile etch product and protection layer, enables reduction of the ion energy to the etching threshold.
    Type: Grant
    Filed: June 17, 2019
    Date of Patent: May 12, 2020
    Assignee: International Business Machines Corporation
    Inventors: Ravi K. Dasaka, Sebastian U. Engelmann, Nicholas C. M. Fuller, Masahiro Nakamura, Richard S. Wise
  • Patent number: 10529633
    Abstract: A method of forming integrated circuit (IC) chips. After masking a layer of a material to be etched, the layer is subjected to an atomic layer etch (ALE). During the ALE, etch effluent is measured with a calorimetric probe. The calorimetric probe results reflect a species of particles resulting from etching the material. The measured etch results are checked until the results indicate the particle content is below a threshold value. When the content is below the threshold ALE is complete and IC chip fabrication continues normally.
    Type: Grant
    Filed: December 6, 2017
    Date of Patent: January 7, 2020
    Assignee: International Business Machines Corporation
    Inventors: Sebastian U. Engelmann, Eric A. Joseph
  • Publication number: 20190311945
    Abstract: After forming source/drain contact openings to expose portions of source/drain regions composed of an n-doped III-V compound semiconductor material, surfaces of the exposed portions of the source/drain regions are cleaned to remove native oxides and doped with plasma-generated n-type dopant radicals. Semiconductor caps are formed in-situ on the cleaned surfaces of the source/drain regions, and subsequently converted into metal semiconductor alloy regions. Source/drain contacts are then formed on the metal semiconductor alloy regions and within the source/drain contact openings.
    Type: Application
    Filed: June 17, 2019
    Publication date: October 10, 2019
    Inventors: Kevin K. Chan, Sebastian U. Engelmann, Marinus Johannes Petrus Hopstaken, Christopher Scerbo, Hongwen Yan, Yu Zhu
  • Publication number: 20190305109
    Abstract: A silicon nitride cap on a gate stack is removed by etching with a fluorohydrocarbon-containing plasma subsequent to formation of source/drain regions without causing unacceptable damage to the gate stack or source/drain regions. A fluorohydrocarbon-containing polymer protection layer is selectively deposited on the regions that are not to be etched during the removal of the nitride cap. The ability to remove the silicon nitride material using gas chemistry, causing formation of a volatile etch product and protection layer, enables reduction of the ion energy to the etching threshold.
    Type: Application
    Filed: June 17, 2019
    Publication date: October 3, 2019
    Inventors: Ravi K. Dasaka, Sebastian U. Engelmann, Nicholas C.M. Fuller, Masahiro Nakamura, Richard S. Wise
  • Patent number: 10366918
    Abstract: After forming source/drain contact openings to expose portions of source/drain regions composed of an n-doped III-V compound semiconductor material, surfaces of the exposed portions of the source/drain regions are cleaned to remove native oxides and doped with plasma-generated n-type dopant radicals. Semiconductor caps are formed in-situ on the cleaned surfaces of the source/drain regions, and subsequently converted into metal semiconductor alloy regions. Source/drain contacts are then formed on the metal semiconductor alloy regions and within the source/drain contact openings.
    Type: Grant
    Filed: October 4, 2016
    Date of Patent: July 30, 2019
    Assignee: International Business Machines Corporation
    Inventors: Kevin K. Chan, Sebastian U. Engelmann, Marinus Johannes Petrus Hopstaken, Christopher Scerbo, Hongwen Yan, Yu Zhu
  • Patent number: 10325998
    Abstract: A silicon nitride cap on a gate stack is removed by etching with a fluorohydrocarbon-containing plasma subsequent to formation of source/drain regions without causing unacceptable damage to the gate stack or source/drain regions. A fluorohydrocarbon-containing polymer protection layer is selectively deposited on the regions that are not to be etched during the removal of the nitride cap. The ability to remove the silicon nitride material using gas chemistry, causing formation of a volatile etch product and protection layer, enables reduction of the ion energy to the etching threshold.
    Type: Grant
    Filed: March 18, 2017
    Date of Patent: June 18, 2019
    Assignees: International Business Machines Corporation, ZEON CORPORATION
    Inventors: Ravi K. Dasaka, Sebastian U. Engelmann, Nicholas C. M. Fuller, Masahiro Nakamura, Richard S. Wise
  • Publication number: 20190172762
    Abstract: A method of forming integrated circuit (IC) chips. After masking a layer of a material to be etched, the layer is subjected to an atomic layer etch (ALE). During the ALE, etch effluent is measured with a calorimetric probe. The calorimetric probe results reflect a species of particles resulting from etching the material. The measured etch results are checked until the results indicate the particle content is below a threshold value. When the content is below the threshold ALE is complete and IC chip fabrication continues normally.
    Type: Application
    Filed: December 6, 2017
    Publication date: June 6, 2019
    Applicant: International Business Machines Corporation
    Inventors: Sebastian U. Engelmann, Eric A. Joseph
  • Publication number: 20190164773
    Abstract: A method of forming field effect transistor (FET) circuits, and forming Integrated Circuit (IC) chips with the FET circuits. After forming gate sidewall spacers, filling with insulation and planarizing to the top of the sidewall spacers, self-aligned source/drain contacts are etched through the insulation and said gate dielectric layer to source/drain regions. A combination fluoroether/hydrofluoroether-hydrofluorocarbon (*FE-HFC) plasma etch etches the source/drain contacts self-aligned. The self-aligned contacts are filled with conductive material, and FETs are wired together into circuits, connecting to FETs through the self-aligned contacts.
    Type: Application
    Filed: November 28, 2017
    Publication date: May 30, 2019
    Applicant: International Business Machines Corporation
    Inventors: John C. Arnold, Robert L. Bruce, Sebastian U. Engelmann, Nathan P. Marchack, Hiroyuki Miyazoe, Jeffrey C. Shearer, Takefumi Suzuki
  • Patent number: 10304692
    Abstract: A method of forming field effect transistor (FET) circuits, and forming Integrated Circuit (IC) chips with the FET circuits. After forming gate sidewall spacers, filling with insulation and planarizing to the top of the sidewall spacers, self-aligned source/drain contacts are etched through the insulation and said gate dielectric layer to source/drain regions. A combination fluoroether/hydrofluoroether-hydrofluorocarbon (*FE-HFC) plasma etch etches the source/drain contacts self-aligned. The self-aligned contacts are filled with conductive material, and FETs are wired together into circuits, connecting to FETs through the self-aligned contacts.
    Type: Grant
    Filed: November 28, 2017
    Date of Patent: May 28, 2019
    Assignee: International Business Machines Corporation
    Inventors: John C. Arnold, Robert L. Bruce, Sebastian U. Engelmann, Nathan P. Marchack, Hiroyuki Miyazoe, Jeffrey C. Shearer, Takefumi Suzuki
  • Patent number: 10305029
    Abstract: Fabrication of a semiconductor device includes providing a semiconductor substrate, and a dielectric layer disposed over the semiconductor substrate. The dielectric layer includes a plurality of vias extending through the dielectric layer to the top surface of the semiconductor substrate. Each of the vias contains an organic planarization material. The dielectric layer is removed by plasma etching with a gas having a general chemical formula of CxHyFz wherein x is greater than 3 and y is greater than z to provide an array of pillars including the organic planarization material on the semiconductor substrate.
    Type: Grant
    Filed: November 10, 2017
    Date of Patent: May 28, 2019
    Assignee: International Business Machines Corporation
    Inventors: Nathan P. Marchack, Sebastian U. Engelmann, Masahiro Nakamura
  • Patent number: 10276439
    Abstract: After bonding a second substrate to a first substrate through a bonded material layer to provide a bonded structure, through dielectric via (TDV) openings of different depths are concurrently formed in the bonded structure by performing a single anisotropic etch using fluorine-deficient species that are obtained by dissociation of fluorocarbon-containing molecules.
    Type: Grant
    Filed: June 2, 2017
    Date of Patent: April 30, 2019
    Assignee: International Business Machines Corporation
    Inventors: Sebastian U. Engelmann, Li-Wen Hung, Eric Joseph, Eugene O'Sullivan, Jeff Waksman, Cornelia Tsang Yang
  • Patent number: 10276384
    Abstract: A gas is ionized into a plasma. A compound of a dopant is mixed into the plasma, forming a mixed plasma. Using a semiconductor device fabrication system, a layer of III-V material is exposed to the mixed plasma to dope the layer with the dopant up to a depth in the layer, forming a shallow doped portion of the layer. The depth of the dopant is controlled by a second layer of the dopant formed at the shallow doped portion of the layer. The second layer is exposed to a solution, where the solution is prepared to erode the dopant in the second layer at a first rate. After an elapsed period, the solution is removed from the second layer, wherein the elapsed period is insufficient to erode a total depth of the layer and the shallow doped portion by more than a tolerance erosion amount.
    Type: Grant
    Filed: January 30, 2017
    Date of Patent: April 30, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Robert L. Bruce, Kevin K. Chan, Sebastian U. Engelmann, Dario L. Goldfarb, Marinus Hopstaken, Mahmoud Khojasteh, George G. Totir, Hongwen Yan, Masahiro Yamazaki
  • Patent number: 10269924
    Abstract: A silicon nitride cap on a gate stack is removed by etching with a fluorohydrocarbon-containing plasma subsequent to formation of source/drain regions without causing unacceptable damage to the gate stack or source/drain regions. A fluorohydrocarbon-containing polymer protection layer is selectively deposited on the regions that are not to be etched during the removal of the nitride cap. The ability to remove the silicon nitride material using gas chemistry, causing formation of a volatile etch product and protection layer, enables reduction of the ion energy to the etching threshold.
    Type: Grant
    Filed: March 18, 2017
    Date of Patent: April 23, 2019
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, ZEON CORPORATION
    Inventors: Ravi K. Dasaka, Sebastian U. Engelmann, Nicholas C. M. Fuller, Masahiro Nakamura, Richard S. Wise
  • Patent number: 10167443
    Abstract: A method for cleaning etch residues that may include treating an etched surface with an aqueous lanthanoid solution, wherein the aqueous lanthanoid solution removes an etch residue that includes a majority of hydrocarbons and at least one element selected from the group consisting of carbon, oxygen, fluorine, nitrogen and silicon. In one example, the aqueous solution may be cerium ammonium nitrate (Ce(NH4)(NO3)),(CAN).
    Type: Grant
    Filed: October 26, 2016
    Date of Patent: January 1, 2019
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, ZEON CORPORATION
    Inventors: Robert L. Bruce, Sebastian U. Engelmann, Eric A. Joseph, Mahmoud Khojasteh, Masahiro Nakamura, Satyavolu S. Papa Rao, Bang N. To, George G. Totir, Yu Zhu
  • Publication number: 20180350677
    Abstract: After bonding a second substrate to a first substrate through a bonded material layer to provide a bonded structure, through dielectric via (TDV) openings of different depths are concurrently formed in the bonded structure by performing a single anisotropic etch using fluorine-deficient species that are obtained by dissociation of fluorocarbon-containing molecules.
    Type: Application
    Filed: June 2, 2017
    Publication date: December 6, 2018
    Inventors: Sebastian U. Engelmann, Li-Wen Hung, Eric Joseph, Eugene O'Sullivan, Jeff Waksman, Cornelia Tsang Yang
  • Patent number: 10043668
    Abstract: Methods for preparing a patterned directed self-assembly layer generally include providing a substrate having a block copolymer layer including a first phase-separated polymer defining a first pattern in the block copolymer layer and a second phase-separated polymer defining a second pattern in the block copolymer layer. The block polymer layer is exposed to a gas pulsing carbon monoxide polymer. The gas pulsing is configured to provide multiple cycles of an etching plasma and a deposition plasma to selectively remove the second pattern of the second phase-separated polymer while leaving behind the first pattern of the first phase-separated polymer on the substrate.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: August 7, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Sebastian U. Engelmann, Ashish V. Jagtiani, Hiroyuki Miyazoe, Hsinyu Tsai
  • Publication number: 20180218907
    Abstract: A gas is ionized into a plasma. A compound of a dopant is mixed into the plasma, forming a mixed plasma. Using a semiconductor device fabrication system, a layer of III-V material is exposed to the mixed plasma to dope the layer with the dopant up to a depth in the layer, forming a shallow doped portion of the layer. The depth of the dopant is controlled by a second layer of the dopant formed at the shallow doped portion of the layer. The second layer is exposed to a solution, where the solution is prepared to erode the dopant in the second layer at a first rate. After an elapsed period, the solution is removed from the second layer, wherein the elapsed period is insufficient to erode a total depth of the layer and the shallow doped portion by more than a tolerance erosion amount.
    Type: Application
    Filed: January 30, 2017
    Publication date: August 2, 2018
    Applicants: International Business Machines Corporation, Tokyo Electron Limited
    Inventors: Robert L. Bruce, Kevin K Chan, Sebastian U. Engelmann, Dario L. Goldfarb, Marinus Hopstaken, Mahmoud Khojasteh, George G. Totir, Hongwen Yan, Masahiro Yamazaki
  • Publication number: 20180218908
    Abstract: A gas is ionized into a plasma. A compound of a dopant is mixed into the plasma, forming a mixed plasma. Using a semiconductor device fabrication system, a layer of III-V material is exposed to the mixed plasma to dope the layer with the dopant up to a depth in the layer, forming a shallow doped portion of the layer. The depth of the dopant is controlled by a second layer of the dopant formed at the shallow doped portion of the layer. The second layer is exposed to a solution, where the solution is prepared to erode the dopant in the second layer at a first rate. After an elapsed period, the solution is removed from the second layer, wherein the elapsed period is insufficient to erode a total depth of the layer and the shallow doped portion by more than a tolerance erosion amount.
    Type: Application
    Filed: February 13, 2018
    Publication date: August 2, 2018
    Applicants: International Business Machines Corporation, Tokyo Electron Limited
    Inventors: Robert L. Bruce, Kevin K. Chan, Sebastian U. Engelmann, Dario L. Goldfarb, Marinus Hopstaken, Mahmoud Khojasteh, George G. Totir, Hongwen Yan, Masahiro Yamazaki