Patents by Inventor Sebastien A. Duval

Sebastien A. Duval has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200200727
    Abstract: Apparatuses and methods of measuring a hydrogen diffusivity of a metal structure including during operation of the metal structure, are provided. A hydrogen charging surface is provided at a first location on an external surface of the structure. In addition, a hydrogen oxidation surface is provided at a second location adjacent to the first location on the external surface of the structure. Hydrogen flux is generated and directed into the metal surface at the charging surface. At least a portion of the hydrogen flux generated by the charging surface is diverted back toward the surface. A transient of the diverted hydrogen fluxes measured, and this measurement is used to determine the hydrogen diffusivity of the metal structure in service.
    Type: Application
    Filed: February 28, 2020
    Publication date: June 25, 2020
    Inventors: Abderrazak Traidia, Mohammed Alshahrani, Sebastien A. Duval
  • Publication number: 20200139267
    Abstract: Separation apparatuses for the separation of a mixture of two fluids, such as a water-in-oil emulsion, via electrocoalescence, are provided. A separation apparatus may include a series of flow conditioners each having a different permittivity, such that the flow conditioner having a permittivity that is similar or equal to the permittivity of the flowing medium is selected. Another separation apparatus may include a flow conditioner having a frequency-dependent permittivity, such that the frequency of the electric field generated is selected so that the permittivity of the flow conditioner is as similar as possible to or equal to the permittivity of the flowing medium. Another separation apparatus may include a replaceable flow conditioner that may be replaced with a flow conditioner having a permittivity that is as similar to or equal to the permittivity of the flowing medium.
    Type: Application
    Filed: December 9, 2019
    Publication date: May 7, 2020
    Inventors: Simone Less, Sebastien A. Duval, Abderrazak Traidia, Regis D. Vilagines
  • Publication number: 20200129885
    Abstract: Separation apparatuses for the separation of a mixture of two fluids, such as a water-in-oil emulsion, via electrocoalescence, are provided. A separation apparatus may include a series of flow conditioners each having a different permittivity, such that the flow conditioner having a permittivity that is similar or equal to the permittivity of the flowing medium is selected. Another separation apparatus may include a flow conditioner having a frequency-dependent permittivity, such that the frequency of the electric field generated is selected so that the permittivity of the flow conditioner is as similar as possible to or equal to the permittivity of the flowing medium. Another separation apparatus may include a replaceable flow conditioner that may be replaced with a flow conditioner having a permittivity that is as similar to or equal to the permittivity of the flowing medium.
    Type: Application
    Filed: December 9, 2019
    Publication date: April 30, 2020
    Inventors: Simone Less, Sebastien A. Duval, Abderrazak Traidia, Regis D. Vilagines
  • Publication number: 20200114280
    Abstract: Separation apparatuses for the separation of a mixture of two fluids, such as a water-in-oil emulsion, via electrocoalescence, are provided. A separation apparatus may include a series of flow conditioners each having a different permittivity, such that the flow conditioner having a permittivity that is similar or equal to the permittivity of the flowing medium is selected. Another separation apparatus may include a flow conditioner having a frequency-dependent permittivity, such that the frequency of the electric field generated is selected so that the permittivity of the flow conditioner is as similar as possible to or equal to the permittivity of the flowing medium. Another separation apparatus may include a replaceable flow conditioner that may be replaced with a flow conditioner having a permittivity that is as similar to or equal to the permittivity of the flowing medium.
    Type: Application
    Filed: December 9, 2019
    Publication date: April 16, 2020
    Inventors: Simone Less, Sebastien A. Duval, Abderrazak Traidia, Regis D. Vilagines
  • Publication number: 20200114281
    Abstract: Separation apparatuses for the separation of a mixture of two fluids, such as a water-in-oil emulsion, via electrocoalescence, are provided. A separation apparatus may include a series of flow conditioners each having a different permittivity, such that the flow conditioner having a permittivity that is similar or equal to the permittivity of the flowing medium is selected. Another separation apparatus may include a flow conditioner having a frequency-dependent permittivity, such that the frequency of the electric field generated is selected so that the permittivity of the flow conditioner is as similar as possible to or equal to the permittivity of the flowing medium. Another separation apparatus may include a replaceable flow conditioner that may be replaced with a flow conditioner having a permittivity that is as similar to or equal to the permittivity of the flowing medium.
    Type: Application
    Filed: December 9, 2019
    Publication date: April 16, 2020
    Inventors: Simone Less, Sebastien A. Duval, Abderrazak Traidia, Regis D. Vilagines
  • Publication number: 20200114279
    Abstract: Separation apparatuses for the separation of a mixture of two fluids, such as a water-in-oil emulsion, via electrocoalescence, are provided. A separation apparatus may include a series of flow conditioners each having a different permittivity, such that the flow conditioner having a permittivity that is similar or equal to the permittivity of the flowing medium is selected. Another separation apparatus may include a flow conditioner having a frequency-dependent permittivity, such that the frequency of the electric field generated is selected so that the permittivity of the flow conditioner is as similar as possible to or equal to the permittivity of the flowing medium. Another separation apparatus may include a replaceable flow conditioner that may be replaced with a flow conditioner having a permittivity that is as similar to or equal to the permittivity of the flowing medium.
    Type: Application
    Filed: December 9, 2019
    Publication date: April 16, 2020
    Inventors: Simone Less, Sebastien A. Duval, Abderrazak Traidia, Regis D. Vilagines
  • Patent number: 10589223
    Abstract: Embodiments of the disclosure include systems and processes for the recovery of sulfur dioxide (SO2) from tail gas of sulfur recovery plant or from flue gas of a power plant, such as flue gas originating from an H2S-containing fuel gas for a gas turbine. SO2-containing gas is dissolved in chilled water and produce SO2-containing chilled water. The SO2-containing chilled is contacted with H2S-containing gas to aqueously react H2S and SO2 and form elemental sulfur. A water stream with the entrained sulfur is routed to a solid-liquid separate, and separated sulfur may be processed or disposed of. The water is recycled and chilled for use in the reaction. Embodiments also include the generation of sulfur dioxide (SO2) from produced sulfur instead of using tail gas or flue gas.
    Type: Grant
    Filed: April 18, 2019
    Date of Patent: March 17, 2020
    Assignee: Saudi Arabian Oil Company
    Inventors: Guillaume Raynel, Sebastien A. Duval
  • Patent number: 10537830
    Abstract: Separation apparatuses for the separation of a mixture of two fluids, such as a water-in-oil emulsion, via electrocoalescence, are provided. A separation apparatus may include a series of flow conditioners each having a different permittivity, such that the flow conditioner having a permittivity that is similar or equal to the permittivity of the flowing medium is selected. Another separation apparatus may include a flow conditioner having a frequency-dependent permittivity, such that the frequency of the electric field generated is selected so that the permittivity of the flow conditioner is as similar as possible to or equal to the permittivity of the flowing medium. Another separation apparatus may include a replaceable flow conditioner that may be replaced with a flow conditioner having a permittivity that is as similar to or equal to the permittivity of the flowing medium.
    Type: Grant
    Filed: February 5, 2018
    Date of Patent: January 21, 2020
    Assignee: Saudi Arabian Oil Company
    Inventors: Simone Less, Sebastien A. Duval, Abderrazak Traidia, Regis D. Vilagines
  • Patent number: 10508033
    Abstract: A method for increasing sulfur recovery from an acid gas feed comprising the steps of introducing the acid gas feed and a sulfur dioxide enriched air stream to a Claus process to produce a product gas stream, introducing the product gas stream to a thermal oxidizer to produce a flue gas stream, cooling the flue gas stream to produce a cooled take-off stream, separating the cooled take-off stream into a saturated gas stream, heating the saturated gas stream to produce a membrane gas stream, introducing the membrane gas stream to a membrane sweeping unit, the membrane sweeping unit comprises a membrane, the sulfur dioxide in the membrane gas stream permeates the membrane of the membrane sweeping unit, introducing a sweep air stream, the sweep air stream collects the sulfur dioxide to create the sulfur dioxide enriched air stream.
    Type: Grant
    Filed: September 12, 2018
    Date of Patent: December 17, 2019
    Assignee: Saudi Arabian Oil Company
    Inventors: Jean-Pierre R. Ballaguet, Milind M. Vaidya, Iran D. Charry-Prada, Sebastien A. Duval
  • Patent number: 10479684
    Abstract: A method for recovering sulfur from an acid gas feed is provided. The method comprising the steps of mixing the acid gas feed and an absorption process outlet stream to form a combined Claus feed, introducing the combined Claus feed and a sulfur dioxide enriched air feed to a Claus process to produce a Claus outlet gas stream, introducing the Claus outlet gas stream to a thermal oxidizer, treating the thermal oxidizer outlet stream in a gas treatment unit to produce a dehydrated stream, introducing the dehydrated stream to a membrane sweeping unit to produce a sweep membrane residue stream and a sulfur dioxide enriched air feed, introducing a sweep air stream to a permeate side of the membrane sweeping unit, and introducing the sweep membrane residue stream to a sulfur dioxide absorption process to produce the absorption process outlet stream and a stack feed.
    Type: Grant
    Filed: September 11, 2018
    Date of Patent: November 19, 2019
    Assignee: Saudi Arabian Oil Compnay
    Inventors: Jean-Pierre R. Ballaguet, Milind M. Vaidya, Iran D. Charry-Prada, Sebastien A. Duval, Feras Hamad, John P. O'Connell, Rashid M. Othman
  • Publication number: 20190282954
    Abstract: A membrane contactor for separating components from a feed gas stream comprises a housing, a feed gas inlet for receiving the feed gas stream at a first pressure, and a liquid inlet or receiving a stream of liquid at a second pressure, the liquid containing an absorbent for reacting components of the gas stream and a slip gas outlet. The contactor also includes a plurality of fibers with pore channels in contact with the feed gas incoming from the gas inlet on a first side, and in contact with liquid incoming from the liquid inlet on a second side, producing a gas-liquid interface at the pore channels. Liquid is prevented from wetting the pore channels by maintaining the first pressure of the gas stream higher than the liquid stream, and a portion of the gas stream bubbles through as slip gas into the liquid stream due to the elevated pressure.
    Type: Application
    Filed: March 14, 2018
    Publication date: September 19, 2019
    Inventors: Seung-Hak Choi, Sarah N. Almahfoodh, Sebastien A. Duval, Abdulaziz Y. Ammar
  • Publication number: 20190265220
    Abstract: Apparatuses and methods of measuring a hydrogen diffusivity of a metal structure including during operation of the metal structure, are provided. A hydrogen charging surface is provided at a first location on an external surface of the structure. In addition, a hydrogen oxidation surface is provided at a second location adjacent to the first location on the external surface of the structure. Hydrogen flux is generated and directed into the metal surface at the charging surface. At least a portion of the hydrogen flux generated by the charging surface is diverted back toward the surface. A transient of the diverted hydrogen fluxes measured, and this measurement is used to determine the hydrogen diffusivity of the metal structure in service.
    Type: Application
    Filed: May 10, 2019
    Publication date: August 29, 2019
    Inventors: Abderrazak Traidia, Mohammed Shahrani, Sebastien A. Duval
  • Publication number: 20190240596
    Abstract: Separation apparatuses for the separation of a mixture of two fluids, such as a water-in-oil emulsion, via electrocoalescence, are provided. A separation apparatus may include a series of flow conditioners each having a different permittivity, such that the flow conditioner having a permittivity that is similar or equal to the permittivity of the flowing medium is selected. Another separation apparatus may include a flow conditioner having a frequency-dependent permittivity, such that the frequency of the electric field generated is selected so that the permittivity of the flow conditioner is as similar as possible to or equal to the permittivity of the flowing medium. Another separation apparatus may include a replaceable flow conditioner that may be replaced with a flow conditioner having a permittivity that is as similar to or equal to the permittivity of the flowing medium.
    Type: Application
    Filed: February 5, 2018
    Publication date: August 8, 2019
    Inventors: Simone Less, Sebastien A. Duval, Abderrazak Traidia, Regis D. Vilagines
  • Publication number: 20190016598
    Abstract: A method for recovering sulfur from an acid gas feed is provided. The method comprising the steps of mixing the acid gas feed and an absorption process outlet stream to form a combined Claus feed, introducing the combined Claus feed and a sulfur dioxide enriched air feed to a Claus process to produce a Claus outlet gas stream, introducing the Claus outlet gas stream to a thermal oxidizer, treating the thermal oxidizer outlet stream in a gas treatment unit to produce a dehydrated stream, introducing the dehydrated stream to a membrane sweeping unit to produce a sweep membrane residue stream and a sulfur dioxide enriched air feed, introducing a sweep air stream to a permeate side of the membrane sweeping unit, and introducing the sweep membrane residue stream to a sulfur dioxide absorption process to produce the absorption process outlet stream and a stack feed.
    Type: Application
    Filed: September 11, 2018
    Publication date: January 17, 2019
    Applicant: Saudi Arabian Oil Company
    Inventors: Jean-Pierre R. BALLAGUET, Milind M. VAIDYA, Iran D. CHARRY-PRADA, Sebastien A. DUVAL, Feras HAMAD, John P. O'CONNELL, Rashid M. OTHMAN
  • Publication number: 20190010052
    Abstract: A method for increasing sulfur recovery from an acid gas feed comprising the steps of introducing the acid gas feed and a sulfur dioxide enriched air stream to a Claus process to produce a product gas stream, introducing the product gas stream to a thermal oxidizer to produce a flue gas stream, cooling the flue gas stream to produce a cooled take-off stream, separating the cooled take-off stream into a saturated gas stream, heating the saturated gas stream to produce a membrane gas stream, introducing the membrane gas stream to a membrane sweeping unit, the membrane sweeping unit comprises a membrane, the sulfur dioxide in the membrane gas stream permeates the membrane of the membrane sweeping unit, introducing a sweep air stream, the sweep air stream collects the sulfur dioxide to create the sulfur dioxide enriched air stream.
    Type: Application
    Filed: September 12, 2018
    Publication date: January 10, 2019
    Applicant: Saudi Arabian Oil Company
    Inventors: Jean-Pierre R. Ballaguet, Milind M. Vaidya, Iran D. Charry-Prada, Sebastien A. Duval
  • Publication number: 20180363978
    Abstract: Techniques for treating a natural gas feed stream include receiving a natural gas feed stream that includes one or more acid gases, one or more hydrocarbon fluids, and one or more non-hydrocarbon fluids; circulating the natural gas feed stream to a membrane module; separating, with the membrane module, at least a portion of the one or more acid gases into a permeate stream and at least a portion of the one or more hydrocarbon fluids into a reject stream; circulating the permeate stream to a distillation unit; and separating, in the distillation unit, the one or more acid gases from the one or more non-hydrocarbon fluids.
    Type: Application
    Filed: June 13, 2018
    Publication date: December 20, 2018
    Applicant: Saudi Arabian Oil Company
    Inventors: Jean-Pierre R. Ballaguet, Milind M. Vaidya, Iran D. Charry-Prada, Sebastien A. Duval, Aadesh Harale, Feras Hamad
  • Publication number: 20180353898
    Abstract: Recovering helium from a gaseous stream includes contacting an acid gas removal membrane with a gaseous stream to yield a permeate stream and a residual stream, removing a majority of the acid gas from the residual stream to yield a first acid gas stream and a helium depleted clean gas stream, removing a majority of the acid gas from the permeate stream to yield a second acid gas stream and a helium rich stream, and removing helium from the helium rich stream to yield a helium product stream and a helium depleted stream. A helium removal system for removing helium from a gaseous stream including hydrocarbon gas, acid gas, and helium includes a first processing zone including a first acid gas removal unit, a second processing zone including a second acid gas removal unit, a third processing zone, and a helium purification unit.
    Type: Application
    Filed: May 25, 2018
    Publication date: December 13, 2018
    Applicant: Saudi Arabian Oil Company
    Inventors: Feras Hamad, Megat A. Rithauddeen, Taib Abang, Milind Vaidya, Sebastien A. Duval
  • Publication number: 20180313806
    Abstract: Apparatuses and methods of measuring a hydrogen diffusivity of a metal structure including during operation of the metal structure, are provided. A hydrogen charging surface is provided at a first location on an external surface of the structure. In addition, a hydrogen oxidation surface is provided at a second location adjacent to the first location on the external surface of the structure. Hydrogen flux is generated and directed into the metal surface at the charging surface. At least a portion of the hydrogen flux generated by the charging surface is diverted back toward the surface. A transient of the diverted hydrogen fluxes measured, and this measurement is used to determine the hydrogen diffusivity of the metal structure in service.
    Type: Application
    Filed: April 28, 2017
    Publication date: November 1, 2018
    Inventors: Abderrazak Traidia, Mohammed Shahrani, Sebastien A. Duval
  • Patent number: 10106411
    Abstract: A method for recovering sulfur from an acid gas feed is provided. The method comprising the steps of mixing the acid gas feed and an absorption process outlet stream to form a combined Claus feed, introducing the combined Claus feed and a sulfur dioxide enriched air feed to a Claus process to produce a Claus outlet gas stream, introducing the Claus outlet gas stream to a thermal oxidizer, treating the thermal oxidizer outlet stream in a gas treatment unit to produce a dehydrated stream, introducing the dehydrated stream to a membrane sweeping unit to produce a sweep membrane residue stream and a sulfur dioxide enriched air feed, introducing a sweep air stream to a permeate side of the membrane sweeping unit, and introducing the sweep membrane residue stream to a sulfur dioxide absorption process to produce the absorption process outlet stream and a stack feed.
    Type: Grant
    Filed: March 13, 2017
    Date of Patent: October 23, 2018
    Assignee: SAUDI ARABIAN OIL COMPANY
    Inventors: Jean-Pierre R. Ballaguet, Milind M. Vaidya, Iran D. Charry-Prada, Sebastien A. Duval, Feras Hamad, John P. O'Connell, Rashid M. Othman
  • Patent number: 10106410
    Abstract: A method for increasing sulfur recovery from an acid gas feed comprising the steps of introducing the acid gas feed and a sulfur dioxide enriched air stream to a Claus process to produce a product gas stream, introducing the product gas stream to a thermal oxidizer to produce a flue gas stream, cooling the flue gas stream to produce a cooled take-off stream, separating the cooled take-off stream into a saturated gas stream, heating the saturated gas stream to produce a membrane gas stream, introducing the membrane gas stream to a membrane sweeping unit, the membrane sweeping unit comprises a membrane, the sulfur dioxide in the membrane gas stream permeates the membrane of the membrane sweeping unit, introducing a sweep air stream, the sweep air stream collects the sulfur dioxide to create the sulfur dioxide enriched air stream.
    Type: Grant
    Filed: March 10, 2017
    Date of Patent: October 23, 2018
    Assignee: SAUDI ARABIAN OIL COMPANY
    Inventors: Jean-Pierre R. Ballaguet, Milind M. Vaidya, Iran D. Charry-Prada, Sebastien A. Duval