Patents by Inventor Sebastien Gorges

Sebastien Gorges has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11062522
    Abstract: An augmented reality surgical system includes a head mounted display (HMD) with a see-through display screen, a motion sensor, a camera, and computer equipment. The motion sensor outputs a head motion signal indicating measured movement of the HMD. The computer equipment computes the relative location and orientation of reference markers connected to the HMD and to the patient based on processing a video signal from the camera. The computer equipment generates a three dimensional anatomical model using patient data created by medical imaging equipment, and rotates and scales at least a portion of the three dimensional anatomical model based on the relative location and orientation of the reference markers, and further rotate at least a portion of the three dimensional anatomical model based on the head motion signal to track measured movement of the HMD. The rotated and scaled three dimensional anatomical model is displayed on the display screen.
    Type: Grant
    Filed: December 9, 2019
    Date of Patent: July 13, 2021
    Assignee: Global Medical Inc
    Inventors: Kenneth Milton Jones, John Popoolapade, Thomas Calloway, Thierry Lemoine, Christian Jutteau, Christophe Bruzy, Yannick James, Joachim Laguarda, Dong-Mei Pei Xing, Sebastien Gorges, Paul Michael Yarin
  • Publication number: 20210030474
    Abstract: A device for medical imaging by X-ray is provided. More specifically, it relates to the simulation of the deployment of an endoprosthesis in order to assist the surgeon in an endovascular surgical procedure. The invention makes use of a single 2D image in order to determine certain characteristics of a simplified model of the endoprosthesis: 2D positions, and deployment value of the stents; to determine the inherent rotation of at least one stent; then to determine the deployment of a model representing the structure of the stents, initialized on the basis of the preceding steps, in a 3D model of a vascular structure.
    Type: Application
    Filed: July 23, 2020
    Publication date: February 4, 2021
    Inventors: Aymeric PIONTECK, Baptiste PIERRAT, Sébastien GORGES, Jean-Noël ALBERTINI, Stéphane AVRIL
  • Patent number: 10874371
    Abstract: A method for calibrating a device D includes at least one radiation source and a detector, the radiation source and the detector being installed on at least one moving support, comprising at least the following elements: at least one first sensor positioned close to the radiation source and at least one second sensor positioned close to the detector, the two first and second sensors being configured to estimate through calculation a position Ps of the source and a position Pd of the detector, and a sensor for sensing the angular position of the moving support, a synchronization module configured to synchronously trigger the measurements of the sensors, a module for pre-processing the measurements of the sensors, the processing module comprising an input receiving an operating model M of the device and a data merging algorithm taking into account at least the two measurements of the sensors and the model M in order to estimate an accurate position value for the source Ps and for the detector Pd.
    Type: Grant
    Filed: July 10, 2018
    Date of Patent: December 29, 2020
    Assignee: THALES
    Inventors: Sébastien Gorges, Guillaume Bernard
  • Publication number: 20200337670
    Abstract: A method for calculating during use the geometric parameters of an x-ray imaging system, an object or a patient to be observed being placed between the x-ray source and a detector of x-rays having passed through the object or patient, wherein it includes at least the following steps: detecting at least one marker on the object or the patient or in proximity to the object, the marker being of unknown 3D position, acquiring a plurality of 2D images for a plurality of viewpoints of the imaging system, detecting the position of at least one marker in each of the acquired 2D images, estimating the projection matrices corresponding to the projections of the object at various viewing angles and reconstructing in 3D the position of a marker on the basis of the estimation of the projection matrices.
    Type: Application
    Filed: December 28, 2018
    Publication date: October 29, 2020
    Inventors: Sébastien GORGES, Guillaume BERNARD, Yannick GRONDIN
  • Publication number: 20200242845
    Abstract: An augmented reality surgical system includes a head mounted display (HMD) with a see-through display screen, a motion sensor, a camera, and computer equipment. The motion sensor outputs a head motion signal indicating measured movement of the HMD. The computer equipment computes the relative location and orientation of reference markers connected to the HMD and to the patient based on processing a video signal from the camera. The computer equipment generates a three dimensional anatomical model using patient data created by medical imaging equipment, and rotates and scales at least a portion of the three dimensional anatomical model based on the relative location and orientation of the reference markers, and further rotate at least a portion of the three dimensional anatomical model based on the head motion signal to track measured movement of the HMD. The rotated and scaled three dimensional anatomical model is displayed on the display screen.
    Type: Application
    Filed: April 8, 2020
    Publication date: July 30, 2020
    Inventors: Kenneth Milton Jones, John Popoolapade, Thomas Calloway, Thierry Lemoine, Christian Jutteau, Christophe Bruzy, Yannick James, Joachim Laguarda, Dong-Mei Pei Xing, Sebastien Gorges, Paul Michael Yarin
  • Publication number: 20200219324
    Abstract: An augmented reality surgical system includes a head mounted display (HMD) with a see-through display screen, a motion sensor, a camera, and computer equipment. The motion sensor outputs a head motion signal indicating measured movement of the HMD. The computer equipment computes the relative location and orientation of reference markers connected to the HMD and to the patient based on processing a video signal from the camera. The computer equipment generates a three dimensional anatomical model using patient data created by medical imaging equipment, and rotates and scales at least a portion of the three dimensional anatomical model based on the relative location and orientation of the reference markers, and further rotate at least a portion of the three dimensional anatomical model based on the head motion signal to track measured movement of the HMD. The rotated and scaled three dimensional anatomical model is displayed on the display screen.
    Type: Application
    Filed: March 17, 2020
    Publication date: July 9, 2020
    Inventors: Kenneth Milton Jones, John Popoolapade, Thomas Calloway, Thierry Lemoine, Christian Jutteau, Christophe Bruzy, Yannick James, Joachim Laguarda, Dong-Mei Pei Xing, Sebastien Gorges, Paul Michael Yarin
  • Publication number: 20200184729
    Abstract: An augmented reality surgical system includes a head mounted display (HMD) with a see-through display screen, a motion sensor, a camera, and computer equipment. The motion sensor outputs a head motion signal indicating measured movement of the HMD. The computer equipment computes the relative location and orientation of reference markers connected to the HMD and to the patient based on processing a video signal from the camera. The computer equipment generates a three dimensional anatomical model using patient data created by medical imaging equipment, and rotates and scales at least a portion of the three dimensional anatomical model based on the relative location and orientation of the reference markers, and further rotate at least a portion of the three dimensional anatomical model based on the head motion signal to track measured movement of the HMD. The rotated and scaled three dimensional anatomical model is displayed on the display screen.
    Type: Application
    Filed: December 9, 2019
    Publication date: June 11, 2020
    Inventors: Kenneth Milton Jones, John Popoolapade, Thomas Calloway, Thierry Lemoine, Christian Jutteau, Christophe Bruzy, Yannick James, Joachim Laguarda, Dong-Mei Pei Xing, Sebastien Gorges, Paul Michael Yarin
  • Patent number: 10650594
    Abstract: An augmented reality surgical system includes a head mounted display (HMD) with a see-through display screen, a motion sensor, a camera, and computer equipment. The motion sensor outputs a head motion signal indicating measured movement of the HMD. The computer equipment computes the relative location and orientation of reference markers connected to the HMD and to the patient based on processing a video signal from the camera. The computer equipment generates a three dimensional anatomical model using patient data created by medical imaging equipment, and rotates and scales at least a portion of the three dimensional anatomical model based on the relative location and orientation of the reference markers, and further rotate at least a portion of the three dimensional anatomical model based on the head motion signal to track measured movement of the HMD. The rotated and scaled three dimensional anatomical model is displayed on the display screen.
    Type: Grant
    Filed: September 25, 2017
    Date of Patent: May 12, 2020
    Assignee: Globus Medical Inc.
    Inventors: Kenneth Milton Jones, John Popoolapade, Thomas Calloway, Thierry Lemoine, Christian Jutteau, Christophe Bruzy, Yannick James, Joachim Laguarda, Dong-Mei Pei Xing, Sebastien Gorges, Paul Michael Yarin
  • Patent number: 10580217
    Abstract: An augmented reality surgical system includes a head mounted display (HMD) with a see-through display screen, a motion sensor, a camera, and computer equipment. The motion sensor outputs a head motion signal indicating measured movement of the HMD. The computer equipment computes the relative location and orientation of reference markers connected to the HMD and to the patient based on processing a video signal from the camera. The computer equipment generates a three dimensional anatomical model using patient data created by medical imaging equipment, and rotates and scales at least a portion of the three dimensional anatomical model based on the relative location and orientation of the reference markers, and further rotate at least a portion of the three dimensional anatomical model based on the head motion signal to track measured movement of the HMD. The rotated and scaled three dimensional anatomical model is displayed on the display screen.
    Type: Grant
    Filed: June 5, 2018
    Date of Patent: March 3, 2020
    Assignee: Globus Medical, Inc.
    Inventors: Kenneth Milton Jones, John Popoolapade, Thomas Calloway, Thierry Lemoine, Christian Jutteau, Christophe Bruzy, Yannick James, Joachim Laguarda, Dong-Mei Pei Xing, Sebastien Gorges, Paul Michael Yarin
  • Patent number: 10546423
    Abstract: An augmented reality surgical system includes a head mounted display (HMD) with a see-through display screen, a motion sensor, a camera, and computer equipment. The motion sensor outputs a head motion signal indicating measured movement of the HMD. The computer equipment computes the relative location and orientation of reference markers connected to the HMD and to the patient based on processing a video signal from the camera. The computer equipment generates a three dimensional anatomical model using patient data created by medical imaging equipment, and rotates and scales at least a portion of the three dimensional anatomical model based on the relative location and orientation of the reference markers, and further rotate at least a portion of the three dimensional anatomical model based on the head motion signal to track measured movement of the HMD. The rotated and scaled three dimensional anatomical model is displayed on the display screen.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: January 28, 2020
    Assignee: Globus Medical, Inc.
    Inventors: Kenneth Milton Jones, John Popoolapade, Thomas Calloway, Thierry Lemoine, Christian Jutteau, Christophe Bruzy, Yannick James, Joachim Laguarda, Dong-Mei Pei Xing, Sebastien Gorges, Paul Michael Yarin
  • Patent number: 10314665
    Abstract: An image processing method applied by a medical imaging device is proposed, including at least one camera and at least one display screen on which is displayed a medical image showing a region of interest of a patient, the method being characterized in that the region of interest is determined by the following steps, the screen and the camera being laid out so as to be facing a practitioner simultaneously, acquisition by the camera of at least one tracking image containing the eyes of the practitioner, analysis of the tracking image so as to localize in the medical image at least one pixel of interest contemplated by the practitioner on the screen from the orientation of the eyes of the practitioner, processing the medical image so as to select the region of interest from the localized pixel of interest.
    Type: Grant
    Filed: September 10, 2014
    Date of Patent: June 11, 2019
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Vincent Bismuth, Régis Vaillant, Sébastien Gorges, Maxime Cazalas, Liliane Ramus
  • Publication number: 20190015067
    Abstract: A method for calibrating a device D includes at least one radiation source and a detector, the radiation source and the detector being installed on at least one moving support, comprising at least the following elements: at least one first sensor positioned close to the radiation source and at least one second sensor positioned close to the detector, the two first and second sensors being configured to estimate through calculation a position Ps of the source and a position Pd of the detector, and a sensor for sensing the angular position of the moving support, a synchronization module configured to synchronously trigger the measurements of the sensors, a module for pre-processing the measurements of the sensors, the processing module comprising an input receiving an operating model M of the device and a data merging algorithm taking into account at least the two measurements of the sensors and the model M in order to estimate an accurate position value for the source Ps and for the detector Pd.
    Type: Application
    Filed: July 10, 2018
    Publication date: January 17, 2019
    Inventors: Sébastien GORGES, Guillaume BERNARD
  • Publication number: 20180286136
    Abstract: An augmented reality surgical system includes a head mounted display (HMD) with a see-through display screen, a motion sensor, a camera, and computer equipment. The motion sensor outputs a head motion signal indicating measured movement of the HMD. The computer equipment computes the relative location and orientation of reference markers connected to the HMD and to the patient based on processing a video signal from the camera. The computer equipment generates a three dimensional anatomical model using patient data created by medical imaging equipment, and rotates and scales at least a portion of the three dimensional anatomical model based on the relative location and orientation of the reference markers, and further rotate at least a portion of the three dimensional anatomical model based on the head motion signal to track measured movement of the HMD. The rotated and scaled three dimensional anatomical model is displayed on the display screen.
    Type: Application
    Filed: June 5, 2018
    Publication date: October 4, 2018
    Inventors: Kenneth Milton Jones, John Popoolapade, Thomas Calloway, Thierry Lemoine, Christian Jutteau, Christophe Bruzy, Yannick James, Joachim Laguarda, Dong-Mei Pei Xing, Sebastien Gorges, Paul Michael Yarin
  • Patent number: 10013808
    Abstract: An augmented reality surgical system includes a head mounted display (HMD) with a see-through display screen, a motion sensor, a camera, and computer equipment. The motion sensor outputs a head motion signal indicating measured movement of the HMD. The computer equipment computes the relative location and orientation of reference markers connected to the HMD and to the patient based on processing a video signal from the camera. The computer equipment generates a three dimensional anatomical model using patient data created by medical imaging equipment, and rotates and scales at least a portion of the three dimensional anatomical model based on the relative location and orientation of the reference markers, and further rotate at least a portion of the three dimensional anatomical model based on the head motion signal to track measured movement of the HMD. The rotated and scaled three dimensional anatomical model is displayed on the display screen.
    Type: Grant
    Filed: February 2, 2016
    Date of Patent: July 3, 2018
    Assignee: Globus Medical, Inc.
    Inventors: Kenneth Milton Jones, John Popoolapade, Thomas Calloway, Thierry Lemoine, Christian Jutteau, Christophe Bruzy, Yannick James, Joachim Laguarda, Dong-Mei Pei Xing, Sebastien Gorges, Paul Michael Yarin
  • Publication number: 20180012413
    Abstract: An augmented reality surgical system includes a head mounted display (HMD) with a see-through display screen, a motion sensor, a camera, and computer equipment. The motion sensor outputs a head motion signal indicating measured movement of the HMD. The computer equipment computes the relative location and orientation of reference markers connected to the HMD and to the patient based on processing a video signal from the camera. The computer equipment generates a three dimensional anatomical model using patient data created by medical imaging equipment, and rotates and scales at least a portion of the three dimensional anatomical model based on the relative location and orientation of the reference markers, and further rotate at least a portion of the three dimensional anatomical model based on the head motion signal to track measured movement of the HMD. The rotated and scaled three dimensional anatomical model is displayed on the display screen.
    Type: Application
    Filed: September 8, 2017
    Publication date: January 11, 2018
    Inventors: Kenneth Milton Jones, John Popoolapade, Thomas Calloway, Thierry Lemoine, Christian Jutteau, Christophe Bruzy, Yannick James, Joachim Laguarda, Dong-Mei Pei Xing, Sebastien Gorges, Paul Michael Yarin
  • Publication number: 20180012416
    Abstract: An augmented reality surgical system includes a head mounted display (HMD) with a see-through display screen, a motion sensor, a camera, and computer equipment. The motion sensor outputs a head motion signal indicating measured movement of the HMD. The computer equipment computes the relative location and orientation of reference markers connected to the HMD and to the patient based on processing a video signal from the camera. The computer equipment generates a three dimensional anatomical model using patient data created by medical imaging equipment, and rotates and scales at least a portion of the three dimensional anatomical model based on the relative location and orientation of the reference markers, and further rotate at least a portion of the three dimensional anatomical model based on the head motion signal to track measured movement of the HMD. The rotated and scaled three dimensional anatomical model is displayed on the display screen.
    Type: Application
    Filed: September 25, 2017
    Publication date: January 11, 2018
    Inventors: Kenneth Milton Jones, John Popoolapade, Thomas Calloway, Thierry Lemoine, Christian Jutteau, Christophe Bruzy, Yannick James, Joachim Laguarda, Dong-Mei Pei Xing, Sebastien Gorges, Paul Michael Yarin
  • Publication number: 20160317245
    Abstract: An image processing method applied by a medical imaging device is proposed, including at least one camera and at least one display screen on which is displayed a medical image showing a region of interest of a patient, the method being characterized in that the region of interest is determined by the following steps, the screen and the camera being laid out so as to be facing a practitioner simultaneously, acquisition by the camera of at least one tracking image containing the eyes of the practitioner, analysis of the tracking image so as to localize in the medical image at least one pixel of interest contemplated by the practitioner on the screen from the orientation of the eyes of the practitioner, processing the medical image so as to select the region of interest from the localized pixel of interest.
    Type: Application
    Filed: September 10, 2014
    Publication date: November 3, 2016
    Inventors: Vincent Bismuth, Régis Vaillant, Sébastien Gorges, Maxime Cazalas, Liliane Ramus
  • Publication number: 20160225192
    Abstract: An augmented reality surgical system includes a head mounted display (HMD) with a see-through display screen, a motion sensor, a camera, and computer equipment. The motion sensor outputs a head motion signal indicating measured movement of the HMD. The computer equipment computes the relative location and orientation of reference markers connected to the HMD and to the patient based on processing a video signal from the camera. The computer equipment generates a three dimensional anatomical model using patient data created by medical imaging equipment, and rotates and scales at least a portion of the three dimensional anatomical model based on the relative location and orientation of the reference markers, and further rotate at least a portion of the three dimensional anatomical model based on the head motion signal to track measured movement of the HMD. The rotated and scaled three dimensional anatomical model is displayed on the display screen.
    Type: Application
    Filed: February 2, 2016
    Publication date: August 4, 2016
    Inventors: Kenneth Milton JONES, John POPOOLAPADE, Thomas CALLOWAY, Thierry LEMOINE, Christian JUTTEAU, Christophe BRUZY, Yannick JAMES, Joachim LAGUARDA, Dong-Mei Pei XING, Sebastien GORGES, Paul Michael YARIN
  • Patent number: 9320480
    Abstract: An image processing method for the 3D display of a patient's organ in which a surgical instrument is positioned, using a medical imaging system comprising a rotating C-arm able to be positioned in at least two angular positions, the C-arm comprising a radiation source at one of its ends, a detector at the other of its ends arranged facing the radiation source, and a collimator arranged between the radiation source and the detector and defining an illumination zone, characterized in that the collimator is adjusted according to the angular position of the rotating C-arm to determine the illumination zone so that the radiation only passes through a region surrounding the surgical instrument.
    Type: Grant
    Filed: July 17, 2013
    Date of Patent: April 26, 2016
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Sebastien Gorges, Luca Bozzelli
  • Publication number: 20150202021
    Abstract: An image processing method for interventional imaging in which a region of interest of a patient is viewed. The method comprises acquiring a succession of images of a region of interest of the patient. The method also comprises detecting and tracking, on the successive images, at least one surgical instrument introduced inside the region of interest of the patient, in order to isolate said instrument therein; and comparing two successive images on which the surgical instrument has been isolated in order to identify at least one common shape therein. The method further comprises estimating the displacement of said common shape between both of these successive images; and re-alignment processing of the different successive images depending on the thereby determined estimations of displacements, these displacement estimations being considered as corresponding to the displacement caused by the physiological movement of the patient with the exception of any other movement.
    Type: Application
    Filed: December 1, 2014
    Publication date: July 23, 2015
    Inventors: Yves Trousset, Jeremie Pescatore, Sebastien Gorges, Vincent Bismuth, Maria Carolina Vanegas Orozo