Patents by Inventor Sebastien Henri Andre Racaniere

Sebastien Henri Andre Racaniere has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11328183
    Abstract: A neural network system is proposed. The neural network can be trained by model-based reinforcement learning to select actions to be performed by an agent interacting with an environment, to perform a task in an attempt to achieve a specified result. The system may comprise at least one imagination core which receives a current observation characterizing a current state of the environment, and optionally historical observations, and which includes a model of the environment. The imagination core may be configured to output trajectory data in response to the current observation, and/or historical observations. The trajectory data comprising a sequence of future features of the environment imagined by the imagination core. The system may also include a rollout encoder to encode the features, and an output stage to receive data derived from the rollout embedding and to output action policy data for identifying an action based on the current observation.
    Type: Grant
    Filed: September 14, 2020
    Date of Patent: May 10, 2022
    Assignee: DeepMind Technologies Limited
    Inventors: Daniel Pieter Wierstra, Yujia Li, Razvan Pascanu, Peter William Battaglia, Theophane Guillaume Weber, Lars Buesing, David Paul Reichert, Arthur Clement Guez, Danilo Jimenez Rezende, Adrià Puigdomènech Badia, Oriol Vinyals, Nicolas Manfred Otto Heess, Sebastien Henri Andre Racaniere
  • Patent number: 11200482
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for environment simulation. In one aspect, a system comprises a recurrent neural network configured to, at each of a plurality of time steps, receive a preceding action for a preceding time step, update a preceding initial hidden state of the recurrent neural network from the preceding time step using the preceding action, update a preceding cell state of the recurrent neural network from the preceding time step using at least the initial hidden state for the time step, and determine a final hidden state for the time step using the cell state for the time step. The system further comprises a decoder neural network configured to receive the final hidden state for the time step and process the final hidden state to generate a predicted observation characterizing a predicted state of the environment at the time step.
    Type: Grant
    Filed: June 5, 2020
    Date of Patent: December 14, 2021
    Assignee: DeepMind Technologies Limited
    Inventors: Daniel Pieter Wierstra, Shakir Mohamed, Silvia Chiappa, Sebastien Henri Andre Racaniere
  • Publication number: 20210089834
    Abstract: A neural network system is proposed to select actions to be performed by an agent interacting with an environment to perform a task in an attempt to achieve a specified result. The system may include a controller to receive state data and context data, and to output action data. The system may also include an imagination module to receive the state and action data, and to output consequent state data. The system may also include a manager to receive the state data and the context data, and to output route data which defines whether the system is to execute an action or to imagine. The system may also include a memory to store the context data.
    Type: Application
    Filed: December 7, 2020
    Publication date: March 25, 2021
    Inventors: Daniel Pieter Wierstra, Yujia Li, Razvan Pascanu, Peter William Battaglia, Theophane Guillaume Weber, Lars Buesing, David Paul Reichert, Oriol Vinyals, Nicolas Manfred Otto Heess, Sebastien Henri Andre Racaniere
  • Publication number: 20210073594
    Abstract: A neural network system is proposed. The neural network can be trained by model-based reinforcement learning to select actions to be performed by an agent interacting with an environment, to perform a task in an attempt to achieve a specified result. The system may comprise at least one imagination core which receives a current observation characterizing a current state of the environment, and optionally historical observations, and which includes a model of the environment. The imagination core may be configured to output trajectory data in response to the current observation, and/or historical observations. The trajectory data comprising a sequence of future features of the environment imagined by the imagination core. The system may also include a rollout encoder to encode the features, and an output stage to receive data derived from the rollout embedding and to output action policy data for identifying an action based on the current observation.
    Type: Application
    Filed: September 14, 2020
    Publication date: March 11, 2021
    Inventors: Daniel Pieter Wierstra, Yujia Li, Razvan Pascanu, Peter William Battaglia, Theophane Guillaume Weber, Lars Buesing, David Paul Reichert, Arthur Clement Guez, Danilo Jimenez Rezende, Adrià Puigdomènech Badia, Oriol Vinyals, Nicolas Manfred Otto Heess, Sebastien Henri Andre Racaniere
  • Patent number: 10860895
    Abstract: A neural network system is proposed to select actions to be performed by an agent interacting with an environment to perform a task in an attempt to achieve a specified result. The system may include a controller to receive state data and context data, and to output action data. The system may also include an imagination module to receive the state and action data, and to output consequent state data. The system may also include a manager to receive the state data and the context data, and to output route data which defines whether the system is to execute an action or to imagine. The system may also include a memory to store the context data.
    Type: Grant
    Filed: November 19, 2019
    Date of Patent: December 8, 2020
    Assignee: DeepMind Technologies Limited
    Inventors: Daniel Pieter Wierstra, Yujia Li, Razvan Pascanu, Peter William Battaglia, Theophane Guillaume Weber, Lars Buesing, David Paul Reichert, Oriol Vinyals, Nicolas Manfred Otto Heess, Sebastien Henri Andre Racaniere
  • Publication number: 20200342289
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for environment simulation. In one aspect, a system comprises a recurrent neural network configured to, at each of a plurality of time steps, receive a preceding action for a preceding time step, update a preceding initial hidden state of the recurrent neural network from the preceding time step using the preceding action, update a preceding cell state of the recurrent neural network from the preceding time step using at least the initial hidden state for the time step, and determine a final hidden state for the time step using the cell state for the time step. The system further comprises a decoder neural network configured to receive the final hidden state for the time step and process the final hidden state to generate a predicted observation characterizing a predicted state of the environment at the time step.
    Type: Application
    Filed: June 5, 2020
    Publication date: October 29, 2020
    Inventors: Daniel Pieter Wierstra, Shakir Mohamed, Silvia Chiappa, Sebastien Henri Andre Racaniere
  • Patent number: 10776670
    Abstract: A neural network system is proposed. The neural network can be trained by model-based reinforcement learning to select actions to be performed by an agent interacting with an environment, to perform a task in an attempt to achieve a specified result. The system may comprise at least one imagination core which receives a current observation characterizing a current state of the environment, and optionally historical observations, and which includes a model of the environment. The imagination core may be configured to output trajectory data in response to the current observation, and/or historical observations. The trajectory data comprising a sequence of future features of the environment imagined by the imagination core. The system may also include a rollout encoder to encode the features, and an output stage to receive data derived from the rollout embedding and to output action policy data for identifying an action based on the current observation.
    Type: Grant
    Filed: November 19, 2019
    Date of Patent: September 15, 2020
    Assignee: DeepMind Technologies Limited
    Inventors: Daniel Pieter Wierstra, Yujia Li, Razvan Pascanu, Peter William Battaglia, Theophane Guillaume Weber, Lars Buesing, David Paul Reichert, Arthur Clement Guez, Danilo Jimenez Rezende, Adrià Puigdomènech Badia, Oriol Vinyals, Nicolas Manfred Otto Heess, Sebastien Henri Andre Racaniere
  • Patent number: 10713559
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for environment simulation. In one aspect, a system comprises a recurrent neural network configured to, at each of a plurality of time steps, receive a preceding action for a preceding time step, update a preceding initial hidden state of the recurrent neural network from the preceding time step using the preceding action, update a preceding cell state of the recurrent neural network from the preceding time step using at least the initial hidden state for the time step, and determine a final hidden state for the time step using the cell state for the time step. The system further comprises a decoder neural network configured to receive the final hidden state for the time step and process the final hidden state to generate a predicted observation characterizing a predicted state of the environment at the time step.
    Type: Grant
    Filed: May 3, 2019
    Date of Patent: July 14, 2020
    Assignee: DeepMind Technologies Limited
    Inventors: Daniel Pieter Wierstra, Shakir Mohamed, Silvia Chiappa, Sebastien Henri Andre Racaniere
  • Publication number: 20200090006
    Abstract: A neural network system is proposed. The neural network can be trained by model-based reinforcement learning to select actions to be performed by an agent interacting with an environment, to perform a task in an attempt to achieve a specified result. The system may comprise at least one imagination core which receives a current observation characterizing a current state of the environment, and optionally historical observations, and which includes a model of the environment. The imagination core may be configured to output trajectory data in response to the current observation, and/or historical observations. The trajectory data comprising a sequence of future features of the environment imagined by the imagination core. The system may also include a rollout encoder to encode the features, and an output stage to receive data derived from the rollout embedding and to output action policy data for identifying an action based on the current observation.
    Type: Application
    Filed: November 19, 2019
    Publication date: March 19, 2020
    Inventors: Daniel Pieter Wierstra, Yujia Li, Razvan Pascanu, Peter William Battaglia, Theophane Guillaume Weber, Lars Buesing, David Paul Reichert, Arthur Clement Guez, Danilo Jimenez Rezende, Adrià Puigdomènech Badia, Oriol Vinyals, Nicolas Manfred Otto Heess, Sebastien Henri Andre Racaniere
  • Publication number: 20200082227
    Abstract: A neural network system is proposed to select actions to be performed by an agent interacting with an environment to perform a task in an attempt to achieve a specified result. The system may include a controller to receive state data and context data, and to output action data. The system may also include an imagination module to receive the state and action data, and to output consequent state data. The system may also include a manager to receive the state data and the context data, and to output route data which defines whether the system is to execute an action or to imagine. The system may also include a memory to store the context data.
    Type: Application
    Filed: November 19, 2019
    Publication date: March 12, 2020
    Inventors: Daniel Pieter Wierstra, Yujia Li, Razvan Pascanu, Peter William Battaglia, Theophane Guillaume Weber, Lars Buesing, David Paul Reichert, Oriol Vinyals, Nicolas Manfred Otto Heess, Sebastien Henri Andre Racaniere
  • Publication number: 20190266475
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for environment simulation. In one aspect, a system comprises a recurrent neural network configured to, at each of a plurality of time steps, receive a preceding action for a preceding time step, update a preceding initial hidden state of the recurrent neural network from the preceding time step using the preceding action, update a preceding cell state of the recurrent neural network from the preceding time step using at least the initial hidden state for the time step, and determine a final hidden state for the time step using the cell state for the time step. The system further comprises a decoder neural network configured to receive the final hidden state for the time step and process the final hidden state to generate a predicted observation characterizing a predicted state of the environment at the time step.
    Type: Application
    Filed: May 3, 2019
    Publication date: August 29, 2019
    Inventors: Daniel Pieter Wierstra, Shakir Mohamed, Silvia Chiappa, Sebastien Henri Andre Racaniere
  • Publication number: 20090093994
    Abstract: A system, method, and computer program for determining a descriptor, comprising calculating a maximum distance for a plurality of points in a sector between each of said plurality of points and an origin; calculating a minimal distance from one of said plurality of points and a target line, wherein said maximum distance is an initial value; computing a plurality of Fourier coefficients from said minimal distances; and defining an invariant descriptor from said Fourier coefficients, and appropriate means and computer-readable instructions.
    Type: Application
    Filed: October 9, 2007
    Publication date: April 9, 2009
    Inventor: Sebastien Henri Andre Racaniere