Patents by Inventor Sebastien Lagrasta

Sebastien Lagrasta has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11495609
    Abstract: An integrated circuit includes a high-voltage MOS (HV) transistor and a capacitor supported by a semiconductor substrate. A gate stack of the HV transistor includes a first insulating layer over the semiconductor layer and a gate electrode formed from a first polysilicon. The capacitor includes a first electrode made of the first polysilicon and a second electrode made of a second polysilicon and at least partly resting over the first electrode. A first polysilicon layer deposited over the semiconductor substrate is patterned to form the first polysilicon of the gate electrode and first electrode, respectively. A second polysilicon layer deposited over the semiconductor substrate is patterned to form the second polysilicon of the second electrode. Silicon oxide spacers laterally border the second electrode and the gate stack of the HV transistor. Silicon nitride spacers border the silicon oxide spacers.
    Type: Grant
    Filed: November 9, 2020
    Date of Patent: November 8, 2022
    Assignee: STMicroelectronics (Crolles 2) SAS
    Inventors: Fausto Piazza, Sebastien Lagrasta, Raul Andres Bianchi, Simon Jeannot
  • Publication number: 20220020924
    Abstract: The disclosure concerns an electronic component manufacturing method including a first step of etching at least one first layer followed, with no exposure to oxygen, by a second step of passivating the first layer.
    Type: Application
    Filed: September 28, 2021
    Publication date: January 20, 2022
    Applicant: STMicroelectronics (Crolles 2) SAS
    Inventors: Yann CANVEL, Sebastien LAGRASTA, Sebastien BARNOLA, Christelle BOIXADERAS
  • Patent number: 11152570
    Abstract: The disclosure concerns an electronic component manufacturing method including a first step of etching at least one first layer followed, with no exposure to oxygen, by a second step of passivating the first layer.
    Type: Grant
    Filed: September 20, 2019
    Date of Patent: October 19, 2021
    Assignee: STMicroelectronics (Crolles 2) SAS
    Inventors: Yann Canvel, Sebastien Lagrasta, Sebastien Barnola, Christelle Boixaderas
  • Publication number: 20210057426
    Abstract: An integrated circuit includes a high-voltage MOS (HV) transistor and a capacitor supported by a semiconductor substrate. A gate stack of the HV transistor includes a first insulating layer over the semiconductor layer and a gate electrode formed from a first polysilicon. The capacitor includes a first electrode made of the first polysilicon and a second electrode made of a second polysilicon and at least partly resting over the first electrode. A first polysilicon layer deposited over the semiconductor substrate is patterned to form the first polysilicon of the gate electrode and first electrode, respectively. A second polysilicon layer deposited over the semiconductor substrate is patterned to form the second polysilicon of the second electrode. Silicon oxide spacers laterally border the second electrode and the gate stack of the HV transistor. Silicon nitride spacers border the silicon oxide spacers.
    Type: Application
    Filed: November 9, 2020
    Publication date: February 25, 2021
    Applicant: STMicroelectronics (Crolles 2) SAS
    Inventors: Fausto PIAZZA, Sebastien LAGRASTA, Raul Andres BIANCHI, Simon JEANNOT
  • Patent number: 10833094
    Abstract: An integrated circuit includes a high-voltage MOS (HV) transistor and a capacitor supported by a semiconductor substrate. A gate stack of the HV transistor includes a first insulating layer over the semiconductor layer and a gate electrode formed from a first polysilicon. The capacitor includes a first electrode made of the first polysilicon and a second electrode made of a second polysilicon and at least partly resting over the first electrode. A first polysilicon layer deposited over the semiconductor substrate is patterned to form the first polysilicon of the gate electrode and first electrode, respectively. A second polysilicon layer deposited over the semiconductor substrate is patterned to form the second polysilicon of the second electrode. Silicon oxide spacers laterally border the second electrode and the gate stack of the HV transistor. Silicon nitride spacers border the silicon oxide spacers.
    Type: Grant
    Filed: April 17, 2018
    Date of Patent: November 10, 2020
    Assignee: STMicroelectronics (Crolles 2) SAS
    Inventors: Fausto Piazza, Sebastien Lagrasta, Raul Andres Bianchi, Simon Jeannot
  • Publication number: 20200098989
    Abstract: The disclosure concerns an electronic component manufacturing method including a first step of etching at least one first layer followed, with no exposure to oxygen, by a second step of passivating the first layer.
    Type: Application
    Filed: September 20, 2019
    Publication date: March 26, 2020
    Inventors: Yann Canvel, Sebastien Lagrasta, Sebastien Barnola, Christelle Boixaderas
  • Patent number: 10128295
    Abstract: A semiconductor substrate includes a photodiode region, a charge storage region electrically coupled to the photodiode region and a capacitive deep trench isolation (CDTI) structure including a conductive region positioned between the photodiode region and the charge storage region. A contact etch stop layer overlies the semiconductor substrate and a premetallization dielectric layer overlies the contact etch stop layer. A first trench, filled with a metal material, extends through the premetallization dielectric layer and bottoms out at or in the contact etch stop layer. A second trench, also filled with the metal material, extends through the premetallization dielectric layer and the contact etch stop layer and bottoms out at or in the conductive region of the CDTI structure. The metal filled first trench forms an optical shield between the photodiode region and the charge storage region. The metal filled second trench forms a contact for biasing the CDTI structure.
    Type: Grant
    Filed: January 10, 2018
    Date of Patent: November 13, 2018
    Assignee: STMicroelectronics (Crolles 2) SAS
    Inventors: Sebastien Lagrasta, Delia Ristoiu, Jean-Pierre Oddou, Cécile Jenny
  • Publication number: 20180233511
    Abstract: An integrated circuit includes a high-voltage MOS (HV) transistor and a capacitor supported by a semiconductor substrate. A gate stack of the HV transistor includes a first insulating layer over the semiconductor layer and a gate electrode formed from a first polysilicon. The capacitor includes a first electrode made of the first polysilicon and a second electrode made of a second polysilicon and at least partly resting over the first electrode. A first polysilicon layer deposited over the semiconductor substrate is patterned to form the first polysilicon of the gate electrode and first electrode, respectively. A second polysilicon layer deposited over the semiconductor substrate is patterned to form the second polysilicon of the second electrode. Silicon oxide spacers laterally border the second electrode and the gate stack of the HV transistor. Silicon nitride spacers border the silicon oxide spacers.
    Type: Application
    Filed: April 17, 2018
    Publication date: August 16, 2018
    Applicant: STMicroelectronics (Crolles 2) SAS
    Inventors: Fausto PIAZZA, Sebastien LAGRASTA, Raul Andres BIANCHI, Simon JEANNOT
  • Publication number: 20180158861
    Abstract: A semiconductor substrate includes a photodiode region, a charge storage region electrically coupled to the photodiode region and a capacitive deep trench isolation (CDTI) structure including a conductive region positioned between the photodiode region and the charge storage region. A contact etch stop layer overlies the semiconductor substrate and a premetallization dielectric layer overlies the contact etch stop layer. A first trench, filled with a metal material, extends through the premetallization dielectric layer and bottoms out at or in the contact etch stop layer. A second trench, also filled with the metal material, extends through the premetallization dielectric layer and the contact etch stop layer and bottoms out at or in the conductive region of the CDTI structure. The metal filled first trench forms an optical shield between the photodiode region and the charge storage region. The metal filled second trench forms a contact for biasing the CDTI structure.
    Type: Application
    Filed: January 10, 2018
    Publication date: June 7, 2018
    Applicant: STMicroelectronics (Crolles 2) SAS
    Inventors: Sebastien Lagrasta, Delia Ristoiu, Jean-Pierre Oddou, Cécile Jenny
  • Patent number: 9978764
    Abstract: An integrated circuit includes a high-voltage MOS (HV) transistor and a capacitor supported by a semiconductor substrate. A gate stack of the HV transistor includes a first insulating layer over the semiconductor layer and a gate electrode formed from a first polysilicon. The capacitor includes a first electrode made of the first polysilicon and a second electrode made of a second polysilicon and at least partly resting over the first electrode. A first polysilicon layer deposited over the semiconductor substrate is patterned to form the first polysilicon of the gate electrode and first electrode, respectively. A second polysilicon layer deposited over the semiconductor substrate is patterned to form the second polysilicon of the second electrode. Silicon oxide spacers laterally border the second electrode and the gate stack of the HV transistor. Silicon nitride spacers border the silicon oxide spacers.
    Type: Grant
    Filed: April 20, 2016
    Date of Patent: May 22, 2018
    Assignee: STMicroelectronics (Crolles 2) SAS
    Inventors: Fausto Piazza, Sebastien Lagrasta, Raul Andres Bianchi, Simon Jeannot
  • Publication number: 20180076250
    Abstract: A semiconductor substrate includes a photodiode region, a charge storage region electrically coupled to the photodiode region and a capacitive deep trench isolation (CDTI) structure including a conductive region positioned between the photodiode region and the charge storage region. A contact etch stop layer overlies the semiconductor substrate and a premetallization dielectric layer overlies the contact etch stop layer. A first trench, filled with a metal material, extends through the premetallization dielectric layer and bottoms out at or in the contact etch stop layer. A second trench, also filled with the metal material, extends through the premetallization dielectric layer and the contact etch stop layer and bottoms out at or in the conductive region of the CDTI structure. The metal filled first trench forms an optical shield between the photodiode region and the charge storage region. The metal filled second trench forms a contact for biasing the CDTI structure.
    Type: Application
    Filed: September 13, 2016
    Publication date: March 15, 2018
    Applicant: STMicroelectronics (Crolles 2) SAS
    Inventors: Sebastien Lagrasta, Delia Ristoiu, Jean-Pierre Oddou, Cécile Jenny
  • Patent number: 9917126
    Abstract: A semiconductor substrate includes a photodiode region, a charge storage region electrically coupled to the photodiode region and a capacitive deep trench isolation (CDTI) structure including a conductive region positioned between the photodiode region and the charge storage region. A contact etch stop layer overlies the semiconductor substrate and a premetallization dielectric layer overlies the contact etch stop layer. A first trench, filled with a metal material, extends through the premetallization dielectric layer and bottoms out at or in the contact etch stop layer. A second trench, also filled with the metal material, extends through the premetallization dielectric layer and the contact etch stop layer and bottoms out at or in the conductive region of the CDTI structure. The metal filled first trench forms an optical shield between the photodiode region and the charge storage region. The metal filled second trench forms a contact for biasing the CDTI structure.
    Type: Grant
    Filed: September 13, 2016
    Date of Patent: March 13, 2018
    Assignee: STMicroelectronics (Crolles 2) SAS
    Inventors: Sebastien Lagrasta, Delia Ristoiu, Jean-Pierre Oddou, Cécile Jenny
  • Publication number: 20170186759
    Abstract: An integrated circuit includes a high-voltage MOS (HV) transistor and a capacitor supported by a semiconductor substrate. A gate stack of the HV transistor includes a first insulating layer over the semiconductor layer and a gate electrode formed from a first polysilicon. The capacitor includes a first electrode made of the first polysilicon and a second electrode made of a second polysilicon and at least partly resting over the first electrode. A first polysilicon layer deposited over the semiconductor substrate is patterned to form the first polysilicon of the gate electrode and first electrode, respectively. A second polysilicon layer deposited over the semiconductor substrate is patterned to form the second polysilicon of the second electrode. Silicon oxide spacers laterally border the second electrode and the gate stack of the HV transistor. Silicon nitride spacers border the silicon oxide spacers.
    Type: Application
    Filed: April 20, 2016
    Publication date: June 29, 2017
    Applicant: STMicroelectronics (Crolles 2) SAS
    Inventors: Fausto Piazza, Sebastien Lagrasta, Raul Andres Bianchi, Simon Jeannot
  • Patent number: 9543409
    Abstract: The production of spacers at flanks of a transistor gate, including a step of forming a dielectric layer covering the gate and a peripheral region of a layer of semiconductor material surrounding the gate, including forming a superficial layer covering the gate and the peripheral region; partially removing the superficial layer configured so as to completely remove the superficial layer at the peripheral region while preserving a residual part of the superficial layer at the flanks; and selective etching of the dielectric layer vis-à-vis the material of the residual part of the superficial layer and vis-à-vis the semiconductor material.
    Type: Grant
    Filed: September 16, 2015
    Date of Patent: January 10, 2017
    Assignees: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES, STMICROELECTRONICS SA, STMICROELECTRONICS (Crolles 2) SAS
    Inventors: Christian Arvet, Sebastien Barnola, Sebastien Lagrasta, Nicolas Posseme
  • Publication number: 20160079388
    Abstract: The production of spacers at flanks of a transistor gate, including a step of forming a dielectric layer covering the gate and a peripheral region of a layer of semiconductor material surrounding the gate, including forming a superficial layer covering the gate and the peripheral region; partially removing the superficial layer configured so as to completely remove the superficial layer at the peripheral region while preserving a residual part of the superficial layer at the flanks; and selective etching of the dielectric layer vis-à-vis the material of the residual part of the superficial layer and vis-à-vis the semiconductor material.
    Type: Application
    Filed: September 16, 2015
    Publication date: March 17, 2016
    Applicants: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES, STMICROELECTRONICS SA, STMICROELECTRONICS (CROLLES 2) SAS
    Inventors: Christian ARVET, Sébastien BARNOLA, Sébastien LAGRASTA, Nicolas POSSEME