Patents by Inventor Sebastien SALLES

Sebastien SALLES has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11497473
    Abstract: A method of processing cardiac ultrasound data for determining information about a mechanical wave in the heart. The method comprises receiving data representative of a time series of three-dimensional data frames, generated from ultrasound signals from a human or animal heart, each frame comprising a set of voxels, each voxel value representing an acceleration component of a respective location in the heart at a common time. The method also comprises identifying, for each voxel, a frame of the series in which the voxel value is at a maximum. A three-dimensional time-propagation data set is generated by assigning each voxel a value representative of the time of the respective frame in the time series for which the corresponding voxel is at a maximum. The method then comprises generating data representative of a three-dimensional velocity vector field by calculating time derivatives from the three-dimensional time-propagation data set.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: November 15, 2022
    Assignee: Norwegian University of Science and Technology (NTNU)
    Inventors: Sebastien Salles, Lasse Lovstakken, Hans Torp
  • Publication number: 20210085294
    Abstract: A method of processing cardiac ultrasound data for determining information about a mechanical wave in the heart. The method comprises receiving data representative of a time series of three-dimensional data frames, generated from ultrasound signals from a human or animal heart, each frame comprising a set of voxels, each voxel value representing an acceleration component of a respective location in the heart at a common time. The method also comprises identifying, for each voxel, a frame of the series in which the voxel value is at a maximum. A three-dimensional time-propagation data set is generated by assigning each voxel a value representative of the time of the respective frame in the time series for which the corresponding voxel is at a maximum. The method then comprises generating data representative of a three-dimensional velocity vector field by calculating time derivatives from the three-dimensional time-propagation data set.
    Type: Application
    Filed: September 27, 2019
    Publication date: March 25, 2021
    Inventors: Sebastien SALLES, Lasse LOVSTAKKEN, Hans TORP