Patents by Inventor Sebastien X. Beysserie

Sebastien X. Beysserie has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11887283
    Abstract: Devices, methods, and non-transitory program storage devices are disclosed herein to provide for improved perspective distortion correction for wide field of view (FOV) video image streams. The techniques disclosed herein may be configured, such that the distortion correction applied to requested region of interest (ROI) portions taken from individual images of the wide FOV video image stream smoothly transitions between applying different distortion correction to ROIs, depending on their respective FOVs. In particular, the techniques disclosed herein may modify the types and/or amounts of perspective distortion correction applied, based on the FOVs of the ROIs, as well as their location within the original wide FOV video image stream. In some cases, additional perspective distortion correction may also be applied to account for tilt in an image capture device as the wide FOV video image stream is being captured and/or the unwanted inclusion of “invalid” pixels from the wide FOV image.
    Type: Grant
    Filed: March 28, 2022
    Date of Patent: January 30, 2024
    Assignee: Apple Inc.
    Inventors: Jianping Zhou, Ali-Amir Aldan, Sebastien X. Beysserie
  • Publication number: 20230396883
    Abstract: Devices, methods, and non-transitory computer readable media are disclosed herein to repair or mitigate the appearance of unwanted reflection artifacts in captured video image streams. These unwanted reflection artifacts often present themselves as brightly-colored spots, circles, rings, or halos that reflect the shape of a bright light source in the captured image. These artifacts, also referred to herein as “ghosts” or “green ghosts” (due to often having a greenish tint), are typically located in regions of the captured images where there is not actually a bright light source located in the image. In fact, such unwanted reflection artifacts often present themselves on the image sensor across the principal point of the lens from where the actual bright light source in the captured image is located. Such devices, methods and computer readable media may be configured to detect, track, and repair such unwanted reflection artifacts in an intelligent and efficient fashion.
    Type: Application
    Filed: June 3, 2022
    Publication date: December 7, 2023
    Inventors: Ahmed T. Kamal, Feng Li, Florian Ciurea, Jianping Zhou, Saeed Izadi, Sebastien X. Beysserie, Stephane S. Ben Soussan
  • Publication number: 20220335579
    Abstract: Devices, methods, and non-transitory program storage devices are disclosed herein to provide for improved perspective distortion correction for wide field of view (FOV) video image streams. The techniques disclosed herein may be configured, such that the distortion correction applied to requested region of interest (ROI) portions taken from individual images of the wide FOV video image stream smoothly transitions between applying different distortion correction to ROIs, depending on their respective FOVs. In particular, the techniques disclosed herein may modify the types and/or amounts of perspective distortion correction applied, based on the FOVs of the ROIs, as well as their location within the original wide FOV video image stream. In some cases, additional perspective distortion correction may also be applied to account for tilt in an image capture device as the wide FOV video image stream is being captured and/or the unwanted inclusion of “invalid” pixels from the wide FOV image.
    Type: Application
    Filed: March 28, 2022
    Publication date: October 20, 2022
    Inventors: Jianping Zhou, Ali-Amir Aldan, Sebastien X. Beysserie
  • Patent number: 10911677
    Abstract: Various techniques are disclosed herein, which comprise obtaining a first stream of images from a first camera and a second stream of images from a second camera, wherein the first camera and second camera have different poses, and at least a portion of the image streams are captured concurrently. Next, a first stabilized trajectory and corresponding set of corrections used to stabilize the first stream of images are calculated. Based on determined differences between the poses of the first camera and second camera during the capture of the first and second streams of images, a second set of corrections to be applied to the second stream of images are derived to match the first stabilized trajectory. If desired, e.g., in response to determining that the stabilized first stream of images does not meet a stabilization criterion, the second stream of images may be stabilized using the second set of corrections.
    Type: Grant
    Filed: September 9, 2019
    Date of Patent: February 2, 2021
    Assignee: Apple Inc.
    Inventors: Jianping Zhou, Sebastien X. Beysserie, Tao Zhang
  • Patent number: 10148881
    Abstract: Techniques to improve a digital image capture device's ability to stabilize a video stream—while enforcing desired stabilization constraints on particular images in the video stream—are presented that utilize an overscan region and a look-ahead technique enabled by buffering a number of video input frames before generating a first stabilized video output frame. More particularly, techniques are disclosed for buffering an initial number of input frames so that a “current” frame can use motion data from both “past” and “future” frames to adjust the value of a stabilization strength parameter and/or the weighted contribution of particular frames from the buffer in the determination of stabilization motion values for the current frame. Such techniques keep the current frame within its overscan and ensure that the stabilization constraints are enforced, while maintaining desired smoothness in the video stream. In some embodiments, the stabilization constraint may comprise a maximum allowed frame displacement.
    Type: Grant
    Filed: October 9, 2017
    Date of Patent: December 4, 2018
    Assignee: Apple Inc.
    Inventors: Sebastien X. Beysserie, Jianping Zhou, Stephane S. Ben Soussan
  • Patent number: 9979889
    Abstract: Techniques to improve a digital image capture device's ability to stabilize a video stream are presented. According to some embodiments, improved stabilization of captured video frames is provided by intelligently harnessing the complementary effects of both optical image stabilization (OIS) and electronic image stabilization (EIS). In particular, OIS may be used to remove intra-frame motion blur that is typically lower in amplitude and dominates with longer integration times, while EIS may be used to remove residual unwanted frame-to-frame motion that is typically larger in amplitude. The techniques disclosed herein may also leverage information provided from the image capture device's OIS system to perform improved motion blur-aware video stabilization strength modulation, which permits better video stabilization performance in low light conditions, where integration times tend to be longer, thus leading to a greater amount of motion blurring in the output stabilized video.
    Type: Grant
    Filed: March 13, 2017
    Date of Patent: May 22, 2018
    Assignee: Apple Inc.
    Inventors: Damien J. Thivent, George E. Williams, Jianping Zhou, Richard L. Baer, Rolf Toft, Sebastien X. Beysserie
  • Publication number: 20180041707
    Abstract: Techniques to improve a digital image capture device's ability to stabilize a video stream—while enforcing desired stabilization constraints on particular images in the video stream—are presented that utilize an overscan region and a look-ahead technique enabled by buffering a number of video input frames before generating a first stabilized video output frame. More particularly, techniques are disclosed for buffering an initial number of input frames so that a “current” frame can use motion data from both “past” and “future” frames to adjust the value of a stabilization strength parameter and/or the weighted contribution of particular frames from the buffer in the determination of stabilization motion values for the current frame. Such techniques keep the current frame within its overscan and ensure that the stabilization constraints are enforced, while maintaining desired smoothness in the video stream. In some embodiments, the stabilization constraint may comprise a maximum allowed frame displacement.
    Type: Application
    Filed: October 9, 2017
    Publication date: February 8, 2018
    Inventors: Sebastien X. Beysserie, Jianping Zhou, Stephane S. Ben Soussan
  • Patent number: 9787902
    Abstract: Techniques to improve a digital image capture device's ability to stabilize a video stream—while enforcing desired stabilization constraints on particular images in the video stream—are presented that utilize an overscan region and a look-ahead technique enabled by buffering a number of video input frames before generating a first stabilized video output frame. More particularly, techniques are disclosed for buffering an initial number of input frames so that a “current” frame can use motion data from both “past” and “future” frames to adjust the value of a stabilization strength parameter and/or the weighted contribution of particular frames from the buffer in the determination of stabilization motion values for the current frame. Such techniques keep the current frame within its overscan and ensure that the stabilization constraints are enforced, while maintaining desired smoothness in the video stream. In some embodiments, the stabilization constraint may comprise a maximum allowed frame displacement.
    Type: Grant
    Filed: June 10, 2016
    Date of Patent: October 10, 2017
    Assignee: Apple Inc.
    Inventors: Sebastien X. Beysserie, Jianping Zhou, Stephane S. Ben Soussan
  • Publication number: 20170280059
    Abstract: Techniques to improve a digital image capture device's ability to stabilize a video stream are presented. According to some embodiments, improved stabilization of captured video frames is provided by intelligently harnessing the complementary effects of both optical image stabilization (OIS) and electronic image stabilization (EIS). In particular, OIS may be used to remove intra-frame motion blur that is typically lower in amplitude and dominates with longer integration times, while EIS may be used to remove residual unwanted frame-to-frame motion that is typically larger in amplitude. The techniques disclosed herein may also leverage information provided from the image capture device's OIS system to perform improved motion blur-aware video stabilization strength modulation, which permits better video stabilization performance in low light conditions, where integration times tend to be longer, thus leading to a greater amount of motion blurring in the output stabilized video.
    Type: Application
    Filed: March 13, 2017
    Publication date: September 28, 2017
    Inventors: Damien J. Thivent, George E. Williams, Jianping Zhou, Richard L. Baer, Rolf Toft, Sebastien X. Beysserie
  • Patent number: 9706123
    Abstract: Techniques to permit a digital image capture device to stabilize a video stream in real-time (during video capture operations) are presented. In general, techniques are disclosed for stabilizing video images using an overscan region and a look-ahead technique enabled by buffering a number of video input frames before generating a first stabilized video output frame. (Capturing a larger image than is displayed creates a buffer of pixels around the edge of an image; overscan is the term given to this buffer of pixels.) More particularly, techniques are disclosed for buffering an initial number of input frames so that a “current” frame can use motion data from both “past” and “future” frames to adjust the strength of a stabilization metric value so as to keep the current frame within its overscan. This look-ahead and look-behind capability permits a smoother stabilizing regime with fewer abrupt adjustments.
    Type: Grant
    Filed: July 25, 2016
    Date of Patent: July 11, 2017
    Assignee: Apple Inc.
    Inventors: Sebastien X. Beysserie, Damien J. Thivent, Jianping Zhou, Rudolph van der Merwe, Jason Klivington, Xiaoxing Li, Anders Holtsberg, Martin Lindberg, George E. Williams
  • Patent number: 9674438
    Abstract: Techniques to improve a digital image capture device's ability to stabilize a video stream in low light capture conditions are presented. In general, techniques are disclosed for stabilizing video images using an overscan region and a look-ahead technique enabled by buffering a number of video input frames before generating a first stabilized video output frame. More particularly, techniques are disclosed for buffering an initial number of input frames so that a “current” frame can use time stamped image capture device motion data from both “past” and “future” frames to adjust the strength of a stabilization metric value so as to keep the current frame within its overscan. The calculated adjustments to the strength of the stabilization metric value for a particular frame may be limited to a target max strength value that is determined based, at least in part, on an estimated amount of motion blur in the current frame.
    Type: Grant
    Filed: August 25, 2014
    Date of Patent: June 6, 2017
    Assignee: Apple Inc.
    Inventors: Jianping Zhou, Sebastien X. Beysserie
  • Patent number: 9596411
    Abstract: Techniques to improve a digital image capture device's ability to stabilize a video stream are presented. According to some embodiments, improved stabilization of captured video frames is provided by intelligently harnessing the complementary effects of both optical image stabilization (OIS) and electronic image stabilization (EIS). In particular, OIS may be used to remove intra-frame motion blur that is typically lower in amplitude and dominates with longer integration times, while EIS may be used to remove residual unwanted frame-to-frame motion that is typically larger in amplitude. The techniques disclosed herein may also leverage information provided from the image capture device's OIS system to perform improved motion blur-aware video stabilization strength modulation, which permits better video stabilization performance in low light conditions, where integration times tend to be longer, thus leading to a greater amount of motion blurring in the output stabilized video.
    Type: Grant
    Filed: September 24, 2015
    Date of Patent: March 14, 2017
    Assignee: Apple Inc.
    Inventors: Damien J. Thivent, George E. Williams, Jianping Zhou, Richard L. Baer, Rolf Toft, Sebastien X. Beysserie
  • Publication number: 20160360111
    Abstract: Techniques to improve a digital image capture device's ability to stabilize a video stream are presented. According to some embodiments, improved stabilization of captured video frames is provided by intelligently harnessing the complementary effects of both optical image stabilization (OIS) and electronic image stabilization (EIS). In particular, OIS may be used to remove intra-frame motion blur that is typically lower in amplitude and dominates with longer integration times, while EIS may be used to remove residual unwanted frame-to-frame motion that is typically larger in amplitude. The techniques disclosed herein may also leverage information provided from the image capture device's OIS system to perform improved motion blur-aware video stabilization strength modulation, which permits better video stabilization performance in low light conditions, where integration times tend to be longer, thus leading to a greater amount of motion blurring in the output stabilized video.
    Type: Application
    Filed: September 24, 2015
    Publication date: December 8, 2016
    Inventors: Damien J. Thivent, George E. Williams, Jianping Zhou, Richard L. Baer, Rolf Toft, Sebastien X. Beysserie
  • Publication number: 20160337589
    Abstract: Techniques to permit a digital image capture device to stabilize a video stream in real-time (during video capture operations) are presented. In general, techniques are disclosed for stabilizing video images using an overscan region and a look-ahead technique enabled by buffering a number of video input frames before generating a first stabilized video output frame. (Capturing a larger image than is displayed creates a buffer of pixels around the edge of an image; overscan is the term given to this buffer of pixels.) More particularly, techniques are disclosed for buffering an initial number of input frames so that a “current” frame can use motion data from both “past” and “future” frames to adjust the strength of a stabilization metric value so as to keep the current frame within its overscan. This look-ahead and look-behind capability permits a smoother stabilizing regime with fewer abrupt adjustments.
    Type: Application
    Filed: July 25, 2016
    Publication date: November 17, 2016
    Inventors: Sebastien X. Beysserie, Damien J. Thivent, Jianping Zhou, Rudolph van der Merwe, Jason Klivington, Xiaoxing Li, Anders Holtsberg, Martin Lindberg, George E. Williams
  • Patent number: 9426409
    Abstract: Traditionally, time-lapse videos are constructed from images captured at time intervals called “temporal points of interests” or “temporal POIs.” Disclosed herein are systems and methods of constructing improved, motion-stabilized time-lapse videos using temporal points of interest and image similarity comparisons. According to some embodiments, a “burst” of images may be captured, centered around the aforementioned temporal points of interest. Then, each burst sequence of images may be analyzed, e.g., by performing an image similarity comparison between each image in the burst sequence and the image selected at the previous temporal point of interest.
    Type: Grant
    Filed: February 3, 2015
    Date of Patent: August 23, 2016
    Assignee: Apple Inc.
    Inventors: Sebastien X. Beysserie, Jason Klivington, Rolf Toft, Frank Doepke
  • Patent number: 9413963
    Abstract: Techniques to permit a digital image capture device to stabilize a video stream in real-time (during video capture operations) are presented. In general, techniques are disclosed for stabilizing video images using an overscan region and a look-ahead technique enabled by buffering a number of video input frames before generating a first stabilized video output frame. (Capturing a larger image than is displayed creates a buffer of pixels around the edge of an image; overscan is the term given to this buffer of pixels.) More particularly, techniques are disclosed for buffering an initial number of input frames so that a “current” frame can use motion data from both “past” and “future” frames to adjust the strength of a stabilization metric value so as to keep the current frame within its overscan. This look-ahead and look-behind capability permits a smoother stabilizing regime with fewer abrupt adjustments.
    Type: Grant
    Filed: August 25, 2014
    Date of Patent: August 9, 2016
    Assignee: Apple Inc.
    Inventors: Sebastien X. Beysserie, Damien J. Thivent, Jianping Zhou, Rudolph van der Merwe, Jason Klivington, Xiaoxing Li, Anders Holtsberg, Martin Lindberg, George E. Williams
  • Publication number: 20160094801
    Abstract: Traditionally, time-lapse videos are constructed from images captured at time intervals called “temporal points of interests” or “temporal POIs.” Disclosed herein are systems and methods of constructing improved, motion-stabilized time-lapse videos using temporal points of interest and image similarity comparisons. According to some embodiments, a “burst” of images may be captured, centered around the aforementioned temporal points of interest. Then, each burst sequence of images may be analyzed, e.g., by performing an image similarity comparison between each image in the burst sequence and the image selected at the previous temporal point of interest.
    Type: Application
    Filed: February 3, 2015
    Publication date: March 31, 2016
    Inventors: Sebastien X. Beysserie, Jason Klivington, Rolf Toft, Frank Doepke
  • Patent number: 9300873
    Abstract: An apparatus, method, and computer-readable medium for motion sensor-based video stabilization. A motion sensor may capture motion data of a video sequence. A controller may compute instantaneous motion of the camera for a current frame of the video sequence. The controller may compare the instantaneous motion to a threshold value representing a still condition and reduce a video stabilization strength parameter for the current frame if the instantaneous motion is less than the threshold value. A video stabilization unit may perform video stabilization on the current frame according to the frame's strength parameter.
    Type: Grant
    Filed: June 22, 2012
    Date of Patent: March 29, 2016
    Assignee: Apple Inc.
    Inventors: Jianping Zhou, Sebastien X. Beysserie
  • Patent number: 9300871
    Abstract: An apparatus, method, and computer-readable medium for motion sensor-based video stabilization. A motion sensor may capture motion data of a video sequence. A controller may compute instantaneous motion of the camera for a current frame of the video sequence and accumulated motion of the camera corresponding to motion of a plurality of frames of the video sequence. The controller may compare the instantaneous motion to a first threshold value, compare the accumulated motion to a second threshold value, and set a video stabilization strength parameter for the current frame based on the results of the comparison. A video stabilization unit may perform video stabilization on the current frame according to the frame's strength parameter.
    Type: Grant
    Filed: June 8, 2012
    Date of Patent: March 29, 2016
    Assignee: Apple Inc.
    Inventors: Jianping Zhou, Sebastien X. Beysserie, George E. Williams, Rolf Toft
  • Publication number: 20160006935
    Abstract: Techniques to improve a digital image capture device's ability to stabilize a video stream in low light capture conditions are presented. In general, techniques are disclosed for stabilizing video images using an overscan region and a look-ahead technique enabled by buffering a number of video input frames before generating a first stabilized video output frame. More particularly, techniques are disclosed for buffering an initial number of input frames so that a “current” frame can use time stamped image capture device motion data from both “past” and “future” frames to adjust the strength of a stabilization metric value so as to keep the current frame within its overscan. The calculated adjustments to the strength of the stabilization metric value for a particular frame may be limited to a target max strength value that is determined based, at least in part, on an estimated amount of motion blur in the current frame.
    Type: Application
    Filed: August 25, 2014
    Publication date: January 7, 2016
    Inventors: Jianping Zhou, Sebastien X. Beysserie